化工学报 ›› 2016, Vol. 67 ›› Issue (6): 2187-2194.DOI: 10.11949/j.issn.0438-1157.20151738
王秀蘅1, 卢建东1, 邹亚超1, 尤世界1, 汤初阳2
收稿日期:
2015-11-19
修回日期:
2016-03-24
出版日期:
2016-06-05
发布日期:
2016-06-05
通讯作者:
王秀蘅
WANG Xiuheng1, LU Jiandong1, ZOU Yachao1, YOU Shijie1, TANG Chuyang2
Received:
2015-11-19
Revised:
2016-03-24
Online:
2016-06-05
Published:
2016-06-05
摘要:
压力延滞渗透(pressure retarded osmosis,PRO)是一种利用不同浓度溶液间渗透压差进行产能的新型膜技术。膜是PRO过程的核心元件,对其产能效果有巨大影响。PRO膜需要有良好的水渗透性和较高的截留率,并具有足够的强度承受高压。首先阐述了PRO过程对膜性能的要求,然后从活性层、支撑层及物理/化学预处理3个方面归纳了当前广泛使用的非对称膜的研究进展,总结了膜材料、制备过程和预处理等对膜性能的影响。同时,归纳了对称膜及准对称膜方面的研究状况,两者可有效降低膜的内部浓差极化现象(ICP),是未来PRO膜研究的一个重要方向。
中图分类号:
王秀蘅, 卢建东, 邹亚超, 尤世界, 汤初阳. 压力延滞渗透膜的研究进展[J]. 化工学报, 2016, 67(6): 2187-2194.
WANG Xiuheng, LU Jiandong, ZOU Yachao, YOU Shijie, TANG Chuyang. Development of pressure retarded osmosis membrane[J]. CIESC Journal, 2016, 67(6): 2187-2194.
[1] | PATTLE R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile [J]. Nature, 1954, 174(4431): 660 |
[2] | LOEB S, VAN HESSEN F, LEVI J, et al. The osmotic power plant[C]//11th Intersociety Energy Conversion Engineering Conference. 1976: 51-57. |
[3] | TOUATI K, DE LA CALLE A, TADEO F, et al. Energy recovery using salinity differences in a multi-effect distillation system [J]. Desalination and Water Treatment, 2014, 55(11): 1-8. |
[4] | AABERG R J. Osmotic power: a new and powerful renewable energy source? [J]. Refocus, 2003, 4(6): 48-50. |
[5] | STRAUB A P. Pressure-retarded osmosis for power generation from salinity gradients: is it viable? [J]. Energy & Environmental Science, 2016, 9: 31-48 |
[6] | HAN G, ZHANG S, LI X, et al. Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation [J]. Progress in Polymer Science, 2015, 51: 1-27. |
[7] | CHUNG T S, LI X, RUI C O, et al. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications [J]. Current Opinion in Chemical Engineering, 2012, 1(3): 246-257. |
[8] | HAN G, CHUNG T S. Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation [J]. AIChE Journal, 2014, 60(3): 1107-1119. |
[9] | XU Y, PENG X, TANG C Y, et al. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module [J]. Journal of Membrane Science, 2010, 348(1): 298-309. |
[10] | YIP N Y, ELIMELECH M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis [J]. Environmental Science & Technology, 2011, 45(23): 10273-10282. |
[11] | LI Y, WANG R, QI S, et al. Structural stability and mass transfer properties of pressure retarded osmosis (PRO) membrane under high operating pressures [J]. Journal of Membrane Science, 2015, 383(1/2): 143-153 |
[12] | LOEB S, VAN HESSEN F, SHAHAF D. Production of energy from concentrated brines by pressure-retarded osmosis(Ⅱ): Experimental results and projected energy costs [J]. Journal of Membrane Science, 1976, 1: 249-269. |
[13] | LEE K L, BAKER R W, LONSDALE H K. Membranes for power generation by pressure-retarded osmosis [J]. Journal of Membrane Science, 1981, 8(2): 141-171. |
[14] | HELFER F, LEMCKERT C, ANISSIMOV Y G. Osmotic power with pressure retarded osmosis: theory, performance and trends-a review [J]. Journal of Membrane Science, 2014, 453: 337-358. |
[15] | ACHILLI A, CATH T Y, CHILDRESS A E. Power generation with pressure retarded osmosis: an experimental and theoretical investigation [J]. Journal of Membrane Science, 2009, 343(1/2): 42-52. |
[16] | SONG X, LIU Z, SUN D D. Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density [J]. Energy & Environmental Science, 2013, 6(4): 1199. |
[17] | BUI N, MCCUTCHEON J R. Nanofiber supported thin-film composite membrane for pressure-retarded osmosis [J]. Environmental Science & Technology, 2014, 48(7): 4129-4136. |
[18] | ZHANG S, FU F, CHUNG T. Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power [J]. Chemical Engineering Science, 2013, 87: 40-50. |
[19] | HAN G, ZHANG S, LI X, et al. High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation [J]. Journal of Membrane Science, 2013, 440: 108-121. |
[20] | SUN S, CHUNG T. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation [J]. Environmental Science & Technology, 2013, 47(22): 13167-13174. |
[21] | HAN G, WANG P, CHUNG T. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation [J]. Environmental Science & Technology, 2013, 47(14): 8070-8077. |
[22] | ZHANG S, CHUNG T. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density [J]. Environmental Science & Technology, 2013, 47(17): 10085-10092. |
[23] | CHOU S, WANG R, SHI L, et al. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density [J]. Journal of Membrane Science, 2012, 389: 25-33. |
[24] | CHOU S, WANG R, FANE A G. Robust and high performance hollow fiber membranes for energy harvesting from salinity gradients by pressure retarded osmosis [J]. Journal of Membrane Science, 2013, 448: 44-54. |
[25] | LI X, CHUNG T. Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation [J]. Applied Energy, 2014, 114: 600-610. |
[26] | LI X, CHUNG T, CHUNG T. Effects of free volume in thin-film composite membranes on osmotic power generation [J]. AIChE Journal, 2013, 59(12): 4749-4761. |
[27] | HONG S S, RYOO W, CHUN M S, et al. Effects of membrane characteristics on performances of pressure retarded osmosis power system [J]. Korean Journal of Chemical Engineering, 2015, 32(7): 1249-1257. |
[28] | FU F, SUN S, ZHANG S, et al. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment [J]. Journal of Membrane Science, 2014, 469: 488-498. |
[29] | FU F J, ZHANG S, CHUNG T S. Sandwich-structured hollow fiber membranes for osmotic power generation [J]. Desalination, 2015, 376: 73-81. |
[30] | THORSEN T. Concentration polarisation by natural organic matter (NOM) in NF and UF [J]. Journal of Membrane Science, 2004, 233: 79-91. |
[31] | HERRON J. Two-layer membrane: US20120175300 [P]. 2012. |
[32] | GERSTANDT K, PEINEMANN K V, SKILHAGEN S E, et al. Membrane processes in energy supply for an osmotic power plant [J]. Desalination, 2008, 224(1/2/3): 64-70. |
[33] | SU J, ZHANG S, CHEN H, et al. Effects of annealing on the microstructure and performance of cellulose acetate membranes for pressure-retarded osmosis processes [J]. Journal of Membrane Science, 2010, 364(1/2): 344-353. |
[34] | ALSVIK I, HÄGG M. Pressure retarded osmosis and forward osmosis membranes: materials and methods [J]. Polymers, 2013, 5(1): 303-327. |
[35] | CHUNG T S. A critical review of polybenzimidazoles: historical development and future R&D [J]. Journal of Macromolecular Science, Part C: Polymer Reviews, 1997, 37(2): 277-301. |
[36] | WANG K Y, CHUNG T S, QIN J J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process [J]. Journal of Membrane Science, 2007, 300(1): 6-12. |
[37] | WANG K Y, YANG Q, CHUNG T S, et al. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall [J]. Chemical Engineering Science, 2009, 64(7): 1577-1584. |
[38] | HAUSMAN R, DIGMAN B, ESCOBAR I C, et al. Functionalization of polybenzimidizole membranes to impart negative charge and hydrophilicity [J]. Journal of Membrane Science, 2010, 363(1/2): 195-203. |
[39] | SHE Q, WEI J, MA N, et al. Fabrication and characterization of fabric-reinforced pressure retarded osmosis membranes for osmotic power harvesting [J]. Journal of Membrane Science, 2016, 504: 75-78. |
[40] | WIDJOJO N, CHUNG T, WEBER M, et al. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes [J]. Journal of Membrane Science, 2011, 383(1/2): 214-223. |
[41] | LI X, ZHANG S, FU F, et al. Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation [J]. Journal of Membrane Science, 2013, 434: 204-217. |
[42] | HAN G, ZHANG S, LI X, et al. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection [J]. Chemical Engineering Science, 2012, 80: 219-231. |
[43] | LI X, WANG K Y, HELMER B, et al. Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes [J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10039-10050. |
[44] | MCCUTCHEON J R, ELIMELECH M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes [J]. Journal of Membrane Science, 2008, 318 (1/2): 458-466. |
[45] | ARENA J T, MCCLOSKEY B, FREEMAN B D, et al. Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis [J]. Journal of Membrane Science, 2011, 375(1/2): 55-62. |
[46] | CUI Y, LIU X Y, CHUNG T S. Enhanced osmotic energy generation from salinity gradients by modifying thin film composite membranes [J]. Chemical Engineering Journal, 2014, 242(8): 195-203. |
[47] | TIN P S, CHUNG T S, HILL A J. Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers [J]. Industrial & Engineering Chemistry Research, 2004, 43(20): 6476-6483. |
[48] | SHAO L, CHUNG T S, GOH S H, et al. Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers [J]. Journal of Membrane Science, 2004, 238(1): 153-163. |
[49] | KWON Y N, LECKIE J O. Hypochlorite degradation of crosslinked polyamide membranes (Ⅱ): Changes in hydrogen bonding behavior and performance [J]. Journal of Membrane Science, 2006, 282(s1/2): 456-464. |
[50] | YOU S, TANG C, YU C, et al. Forward osmosis with a novel thin-film inorganic membrane [J]. Environmental Science & Technology, 2013, 47(15): 8733-8742. |
[51] | WANG K Y, ONG R C, CHUNG T S. Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer [J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4824-4831. |
[52] | QI S, QIU C Q, ZHAO Y, et al. Double-skinned forward osmosis membranes based on layer-by-layer assembly-FO performance and fouling behavior [J]. Journal of Membrane Science, 2012, 405: 20-29. |
[53] | 王秀蘅, 禹晨, 吴宝利, 等. 准对称薄层结构无机膜的制备及其正向渗透性能 [J]. 中国给水排水, 2014, (23): 101-104. |
WANG X H, YU C, WU B L, et al. Fabrication of quasi-symmetric thin-layer inorganic membrane and its forward osmosis performance [J]. China Water & Wastewater, 2014, (23): 101-104. | |
[54] | 钟溢健, 张金娜, 王秀蘅, 等. 聚乙烯醇修饰准对称无机膜的正向渗透效能 [J]. 哈尔滨工业大学学报, 2015, 47(8): 7-11. ZHONG Y J, ZHANG J N, WANG X H, et al. Polyvinyl alcohol modified quasi-symmetric thin film inorganic membrane for enhanced forward osmosis performance [J]. Journal of Harbin Institute of Technology, 2015, 47(8): 7-11. |
[55] | 钟溢健, 张济辞, 吴子焱, 等. 新型准对称无机膜的正渗透去除Cd2+的效能 [J]. 化工学报, 2015, 66(1): 386-392. ZHONG Y J, ZHANG J C, WU Z Y, et al. Novel quasi-symmetric thin-film inorganic membrane for elimination of Cd2+ in aqueous solution by forward osmosis [J]. CIESC Journal, 2015, 66(1): 386-392. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[10] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[13] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[14] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[15] | 贾晓宇, 杨剑, 王博, 林梅, 王秋旺. 金属丝网毛细特性的孔隙尺度数值分析[J]. 化工学报, 2023, 74(5): 1928-1938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||