[1] |
ZHANG Q H, HAN W D, HONG Y J, et al. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst[J]. Catal. Today, 2009, 148(3/4):335-340.
|
[2] |
XIE S, WANG Y, ZHANG Q, et al. MgO and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water[J]. ACS Catal., 2014, 4(10):3644-3653.
|
[3] |
HE Z Q, WANG D, FANG H Y, et al. Highly efficient and stable Ag/AgIO3 particles for photocatalytic reduction of CO2 under visible light[J]. Nanoscale, 2014, 6(18):10540-10544.
|
[4] |
何志桥, 林海燕, 陈建孟, 等. Ag3PO4形貌和晶面对Ag/Ag3PO4等离子体催化剂光催化还原CO2的影响[J]. 化工学报, 2015, 66(12):4850-4857. HE Z Q, LIN H Y, CHEN J M, et al. Effect of morphology and exposed facets of Ag3PO4 on photocatalytic reduction of CO2 to CH3OH over Ag/Ag3PO4 plasmonic photocatalysts[J]. CIESC Journal, 2015, 66(12):4850-4857.
|
[5] |
WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1):76-80.
|
[6] |
CAO S W, YU J G. g-C3N4-based photocatalysts for hydrogen generation[J]. J. Phys. Chem. Lett., 2014, 5(12):2101.
|
[7] |
张金水, 王博, 王心晨. 氮化碳聚合物半导体光催化[J]. 化学进展, 2014, 26(1):19-29. ZHANG J S, WANG B, WANG X C. Carbon nitride polymeric semiconductor for photocatalysis[J]. Prog. Chem., 2014, 26(1):19-29.
|
[8] |
ZHANG W, ZHANG Q, DONG F. Visible-light photocatalytic removal of NO in air over BiOX (X=Cl, Br, I) single-crystal nanoplates prepared at room temperature[J]. Ind. Eng. Chem. Res., 2013, 52(20):6740-6746.
|
[9] |
CHANG X F, HUANG J, CHENG C, et al. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source:characterization and catalytic performance[J]. Catal. Commun., 2010, 11(5):460-464.
|
[10] |
王晓雯, 张小超, 樊彩梅. BiOCl基光催化材料的研究进展[J]. 化工进展, 2014, 33(1):124-132. WANG X W, ZHANG X C, FAN C M. Research and development of BiOCl-based photocatalytic materials[J]. Chem. Ind. Eng. Prog., 2014, 33(1):124-132.
|
[11] |
WANG D H, GAO G Q, ZHANG Y W, et al. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation[J]. Nanoscale, 2012, 4(24):7780-7785.
|
[12] |
LIU Y Y, SON W J, LU J B, et al. Composition dependence of the photocatalytic activities of BiOCl(1-x)Br(x) solid solutions under visible light[J]. Chem.-Eur. J., 2011, 17(34):9342-9349.
|
[13] |
于洪涛, 全燮. 纳米异质结光催化材料在环境污染控制领域的研究进展[J]. 化学进展, 2009, 2/3(21):406-419. YU H T, QUAN X. Nano-heterojunction photocatalytic materials in environmental pollution controlling[J]. Prog. Chem., 2009, 2/3(21):406-419
|
[14] |
SHI S, GONDAL M A, AL-SAADI A A, et al. Facile preparation of g-C3N4 modified BiOCl hybrid photocatalyst and vital role of frontier orbital energy levels of model compounds in photocactivity enhancement[J]. J. Colloid Interf. Sci., 2014, 416:212-219.
|
[15] |
CHANG F, XIE Y, ZHANG J, et al. Construction of exfoliated g-C3N4 nanosheets-BiOCl hybrids with enhanced photocatalytic performance[J]. RSC Adv., 2014, 4(54):28519-28528.
|
[16] |
DONG F, WU L W, SUN Y J, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. J. Mater. Chem., 2011, 21(39):15171-15174.
|
[17] |
MARTHA S, NASHIM A, PARIDA K M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light[J]. J. Mater. Chem. A, 2013, 1(26):7816-7824.
|
[18] |
JIANG J, ZHAO K, XIAO X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. J. Am. Chem. Soc., 2012, 134(10):4473-4476.
|
[19] |
ZHANG Z, ZHOU Y, YU S, et al. Ag-BiOCl nanocomposites prepared by the oxygen vacancy induced photodeposition method with improved visible light photocatalytic activity[J]. Mater. Lett., 2015, 150(1):97-100.
|
[20] |
张笛, 肖清贵, 张炳烛, 等. 氯氧化铋在盐酸溶液中溶解度的测定和关联[J]. 化工学报, 2014, 65(6):1987-1992. ZHANG D, XIAO Q G, ZHANG B Z, et al. Determination and correlation of solubility of bismuth oxychloride inhydrochloric acid solution[J]. CIESC Journal, 2014, 65(6):1987-1992.
|
[21] |
SU Q, SUN J, WANG J Q, et al. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates[J]. Catal. Sci. Technol., 2014, 4(6):1556-1562.
|
[22] |
SANO T, TSUTSUI S, KOIKE K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. J. Mater. Chem. A, 2013, 1(21):6489-6496.
|
[23] |
HU Y, LI D Z, ZHENG Y, et al. BiVO4/TiO2 nanocrystalline heterostructure:a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene[J]. Appl. Catal. B-Environ., 2011, 104(1/2):30-36.
|
[24] |
ZHANG Z, SHAO C, LI X, et al. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Appl. Mater. Inter., 2010, 2(10):2915-2923.
|
[25] |
YAN S C, LI Z S, ZOU Z G. Photodegradation of Rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir, 2010, 26(6):3894-3901.
|
[26] |
PRANGER L, TANNENBAUM R. Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay[J]. Macromolecules, 2008, 41(22):8682-8687.
|
[27] |
WANG M, LIU Q, CHE Y S, et al. Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol-gel method[J]. J. Alloy. Compd., 2013, 548:70-76.
|
[28] |
ZHANG J, XIA J X, YIN S, et al. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids[J]. Colloid. Surface. A, 2013, 420:89-95.
|
[29] |
YE L Q, DENG K J, XU F, et al. Increasing visible-light absorption for photocatalysis with black BiOCl[J]. Phys. Chem. Chem. Phys., 2012, 14(1):82-85.
|
[30] |
ONG W J, PUTRI L K, TAN L L, et al. Heterostructured AgX/g-C3N4(X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach:emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide[J]. Appl. Catal. B-Environ., 2016, 180:530-543.
|
[31] |
CAO J, LUO B, LIN H, et al. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties[J]. Appl. Catal. B-Environ., 2012, 111/112(2):288-296.
|
[32] |
HE Z Q, SHI Y Q, GAO C, et al. BiOCl/BiVO4 p-n heterojunction with enhanced photocatalytic activity under visible-light irradiation[J]. J. Phys. Chem. C, 2014, 118(1):389-398.
|
[33] |
CHAI S Y, YONG J K, JUNG M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J]. J. Catal., 2009, 262(1):144-149.
|
[34] |
张磊, 杨国锐, 常薇, 等. ZnxCd(1-x)S/TiO2异质结复合纤维的制备及其光催化性能[J]. 化工进展, 2013, 32(4):863-868. ZHANG L, YANG G R, CHANG W, et al. Preparation and photocatalytic activity of ZnxCd1-xS/TiO2 heterostructures composite fibers[J]. Chem. Ind. Eng. Prog., 2013, 32(4):863-868.
|
[35] |
LEE D, YONG K. Partial conversion reaction of ZnO nanowires to ZnSe by a simple selenization method and their photocatalytic activities[J]. Mater. Chem. Phys., 2012, 137(1):194-199.
|
[36] |
DAI K, LU L, LIANG C, et al. A high efficient graphitic-C3N4/BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material.[J]. Dalton T., 2015, 44(17):7903-7910
|
[37] |
LI X, WEN J Q, LOW J X, et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J]. Sci. China Mater., 2014, 57(1):70-100.
|
[38] |
SHOWN I, HSU H C, CHANG Y C, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide[J]. Nano. Lett., 2014, 14(11):6097-6103.
|
[39] |
SUN M L, ZHAO Q H, DU C F, et al. Enhanced visible light photocatalytic activity in BiOCl/SnO2:heterojunction of two wide band-gap semiconductors[J]. RSC Adv., 2015, 5(29):22740-22752.
|