化工学报 ›› 2017, Vol. 68 ›› Issue (3): 1099-1108.DOI: 10.11949/j.issn.0438-1157.20161077

• 过程系统工程 • 上一篇    下一篇

基于密度权重支持向量数据描述的冷水机组故障检测

顾笑伟1, 王智伟1, 王占伟1, 何所畏1, 闫增峰2   

  1. 1 西安建筑科技大学环境学院, 陕西 西安 710055;
    2 西安建筑科技大学建筑学院, 陕西 西安 710055
  • 收稿日期:2016-08-01 修回日期:2016-11-04 出版日期:2017-03-05 发布日期:2017-03-05
  • 通讯作者: 王智伟,wzhiwei-atu@163.com
  • 基金资助:

    “十二五”国家科技支撑计划项目(2011BAJ03B06)。

Chiller fault detection by density weighted support vector data description

GU Xiaowei1, WANG Zhiwei1, WANG Zhanwei1, HE Suowei1, YAN Zengfeng2   

  1. 1 School of Environmental, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China;
    2 School of Architecture, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
  • Received:2016-08-01 Revised:2016-11-04 Online:2017-03-05 Published:2017-03-05
  • Contact: 10.11949/j.issn.0438-1157.20161077
  • Supported by:

    supported by "Twelfth Five-Year" National Key Technology Research and Development Program of China (2011BAJ03B06).

摘要:

虚警率(FAR)是评价冷水机组故障检测性能的关键指标,用户无法接受过高的FAR。为了降低支持向量数据描述(SVDD)在冷水机组故障检测时的FAR,将密度权重集成到SVDD中,提出了一种基于密度权重支持向量数据描述(DW-SVDD)的冷水机组故障检测方法,该方法考虑了样本数据在真实空间中的密度分布情况。使用ASHRAE RP-1043冷水机组实验数据对提出的方法进行验证,并将检测结果与传统SVDD的冷水机组故障检测方法进行比较。结果表明,提出的方法将FAR从10.5%降低到7%,同比下降超过了30%,同时对4个劣化等级下的7种典型冷水机组故障有着优良的检测性能。

关键词: 支持向量数据描述, 算法, 集成, 冷水机组, 故障检测, 模型

Abstract:

False alarm rate (FAR) is a key indicator to evaluate performance of chiller fault detection methods, since customers cannot accept high FAR. In order to reduce FAR of support vector data description (SVDD)-based chiller fault detection, a density weighted support vector data description (DW-SVDD)-based chiller fault detection method was proposed by integration of density weight into SVDD with a consideration of density distribution of sample data in real space. The proposed method was validated with experimental data of RP-1043 ASHRAE and detection results were compared to those of traditional SVDD chiller fault detection methods. The results showed that the new method could reduce FAR from 10.5% to 7%, which was lowered about 30%, and had excellent detection performance for 7 typical chiller faults at 4 severity levels.

Key words: support vector data description, algorithm, integration, chiller, fault detection, model

中图分类号: