[1] |
SOMERVILLE C, YOUNGS H, TAYLOR C, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329:790-792.
|
[2] |
LI H, DENG A, REN J, et al. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst[J]. Bioresource Technology, 2014, 158:313-320.
|
[3] |
OH S J, JUNG S H, KIM J S. Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor[J]. Bioresource Technology, 2013, 144:172-178.
|
[4] |
ZHANG L, YU H, WANG P, et al. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst[J]. Bioresource Technology, 2014, 151:355-360.
|
[5] |
TANG Y, ZHAO D, CRISTHIAN C, et al. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media[J]. Biotechnology for Biofuels, 2011, 4(1):1.
|
[6] |
XING Y, BU L, SUN D, et al. High glucose recovery from direct enzymatic hydrolysis of bisulfite-pretreatment on non-detoxified furfural residues[J]. Bioresource Technology, 2015, 193:401-407.
|
[7] |
YU H, XING Y, LEI F, et al. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv[J]. Bioresource Technology, 2014, 167:46-52.
|
[8] |
BU L, XING Y, YU H, et al. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue[J]. Biotechnol Biofuels, 2012, 5(12):87-91.
|
[9] |
WANG G S, PAN X J, ZHU J Y, et al. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods[J]. Biotechnology Progress, 2009, 25(4):1086-1093.
|
[10] |
ZHU J Y, PAN X J, WANG G S, et al. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine[J]. Bioresource Technology, 2009, 100:2411-2418.
|
[11] |
ZHU J Y, ZHU W Y, OBRYAN P, et al. Ethanol production from SPORL-pretreated lodgepole pine:preliminary evaluation of mass balance and process energy efficiency[J]. Appl. Microbiol. Biotechnol., 201086:1355-1365.
|
[12] |
ZHANG D S, YANG Q, ZHU J Y, et al. Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification[J]. Bioresource Technology, 2013, 129:127-134.
|
[13] |
刘青, 楼宏铭, 杨东杰, 等. 接枝磺化木质素高效减水剂的配伍性能研究[J]. 精细化工, 2008, 25(10):1016-1020. LIU Q, LOU H M, YANG D J, et al. Research on compatibility of graft-sulfonated lignin as superplasticizers[J]. Fine Chemicals, 2008, 25(10):1016-1020.
|
[14] |
WINOWISKI T, BRZEZINSKI J, LEBO S. Improved efficacy of lignosulfonate dispersants through a novel combination[C]//DOWNER R A, MUENINGHOFF J C, VOLGAS G C. Pesticide Formulations and Delivery Systems:Meeting the Challenges of the Current Crop Protection Industry. ASTM International, 2003.
|
[15] |
QIN Y L, YANG D J, QIU X Q. Hydroxypropyl sulfonated lignin as dye dispersant:effect of average molecular weight[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12):3239-3244.
|
[16] |
WU Y X, ZHOU J H, YE C C, et al. Optimized synthesis of lignosulphonate-gpoly (acrylic acid-co-acrylamide) superabsorbent hydrogel based on the Taguchi method[J]. Iran. Polym. J., 2010, 19(7):511-520.
|
[17] |
SLUITER A, HAMES B, RUIZ R, et al. Determination of structural carbohydrates and lignin in biomass. LAP-002 NREL Analytical Procedure[R]. National Renewable Energy Laboratory Golden, Co, 2008.
|
[18] |
庞煜霞, 杨东杰, 邱学青, 等. 木质素磺酸盐磺化度测定方法的改进[J]. 中华纸业, 2006, 27(11):38-40. PANG Y X, YANG D J, QIU X Q, et al. An improvement on the measuring method of the sulphonation degree of lignosulfonate[J]. Paper Industry, 2006, 27(11):38-40.
|
[19] |
LIU L, SUN J, CAI C, et al. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation[J]. Bioresource Technology, 2009, 100(23):5865-5871.
|
[20] |
刘志平. 麦草碱木素的高温磺化改进及木素在纤维表面的沉积机理探索[D]. 广州:华南理工大学, 2012. LIU Z P. Improvement of high temperature sulfonation of wheat straw alkali lignin and its precipitation mechanism on fiber surface[D]. Guangzhou:South China University of Technology, 2012.
|
[21] |
LINDGREN C, LINDSTRÖM M E. The kinetics of residual delignification and factors affecting the amount of residual lignin during kraft pulping[J]. Journal of Pulp and Paper Science (JPPS), 1996, 22(8):290-295.
|
[22] |
SANTOS A, RODRÍGUEZ F, GILARRANZ M A, et al. Kinetic modeling of kraft delignification of Eucalyptus globulus[J]. Industrial & Engineering Chemistry Research, 1997, 36(10):4114-4125.
|
[23] |
DOLK M, YAN J F, MCCARTHY J L. Lignin 25. Kinetics of delignification of western Hemlock in flow-through reactors under alkaline conditions[J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1989, 43(2):91-98.
|
[24] |
KIM S, HOLTZAPPLE M T. Delignification kinetics of corn stover in lime pretreatment[J]. Bioresource Technology, 2006, 97(5):778-785.
|
[25] |
詹怀宇. 制浆原理与工程[M]. 3版. 北京:中国轻工业出版社, 2014:26-106. ZHAN H Y. Pulping Principle and Engineering[M]. 3rd ed. Beijing:China Light Industry Press, 2014:26-106.
|
[26] |
宋丽丽. 白腐菌高效改性木质素促进秸秆酶解反应机制研究[D]. 武汉:华中科技大学, 2013. SONG L L. Mechanism study on improvement of enzymatic hydrolysis of corn stover by efficient lignin modification with white-rot fungus[D]. Wuhan:Huazhong University of Science and Technology, 2013.
|
[27] |
PAN X. Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose[J]. Journal of Biobased Materials and Bioenergy, 2008, 2:25-32.
|
[28] |
崔美, 黄仁亮, 苏荣欣, 等. 木质纤维素新型预处理与顽抗特性[J]. 化工学报, 2012, 63(3):677-687. CUI M, HUANG R L, SU R X, et al. Au overview on lignocellulose pretreatment and recalcitrant characteristics[J]. CIESC Journal, 2012, 63(3):677-687.
|
[29] |
LOU H, ZHU J Y, LAN T Q, et al. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses[J]. ChemSusChem, 2013, 6:919-927.
|
[30] |
LOU H, WANG M, LAI H, et al. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate[J]. Bioresource Technology, 2013, 146:478-484.
|
[31] |
WANG Z, ZHU J Y, FU Y, et al. Lignosulfonate-mediated cellulase adsorption:enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin[J]. Biotechnology for Biofuels, 2013, 6:156.
|
[32] |
ZHANG C, HOUTMAN C J, ZHU J Y. Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas-fir[J]. Process Biochemistry, 2014, 49:466-473.
|