化工学报 ›› 2018, Vol. 69 ›› Issue (5): 1819-1828.DOI: 10.11949/j.issn.0438-1157.20171405
林江辉, 王琼, 王捷, 王洪涛, 马光远, 徐艳飞, 定明月
收稿日期:
2017-10-20
修回日期:
2017-12-07
出版日期:
2018-05-05
发布日期:
2018-05-05
通讯作者:
定明月
基金资助:
广东省科技计划项目(2015A010106011,2016A050502037);中央高校基本科研业务费专项资金(2042017kf0173,2042017kf0200)。
LIN Jianghui, WANG Qiong, WANG Jie, WANG Hongtao, MA Guangyuan, XU Yanfei, DING Mingyue
Received:
2017-10-20
Revised:
2017-12-07
Online:
2018-05-05
Published:
2018-05-05
Supported by:
supported by the Guangdong Province Science and Technology Project(2015A010106011, 2016A050502037) and the Fundamental Research Funds for the Central Universities(2042017kf0173, 2042017kf0200).
摘要:
天然气的供需矛盾促使人们寻找新的天然气资源,其中利用生物质合成天然气(Bio-SNG)的替代技术受到了全世界的关注。在整个工艺过程中,生物质合成气制取甲烷是关键技术,而甲烷化催化剂是其核心要素。简述了近年来生物质合成气甲烷化机理及其催化体系的研究进展,重点讨论了合成气中CO甲烷化、CO2甲烷化反应机理,以及甲烷化催化剂中活性金属、助剂和载体对CO甲烷化、CO2甲烷化以及CO与CO2共存条件下甲烷化反应性能的影响,分析了目前仍存在的主要问题,并指出了进一步研究的发展方向。
中图分类号:
林江辉, 王琼, 王捷, 王洪涛, 马光远, 徐艳飞, 定明月. 生物质合成气甲烷化机理及催化体系研究进展[J]. 化工学报, 2018, 69(5): 1819-1828.
LIN Jianghui, WANG Qiong, WANG Jie, WANG Hongtao, MA Guangyuan, XU Yanfei, DING Mingyue. Progress on mechanism and catalysts of biomass syngas methanation[J]. CIESC Journal, 2018, 69(5): 1819-1828.
[1] | 崔民选, 王军生, 陈义和. 中国能源发展报告(2015)[M]. 北京:社会科学文献出版社, 2015. CUI M X, WANG J S, CHEN Y H. Energy Development Report of China(2015)[M]. Beijing:Social Science Academic Press, 2015. |
[2] | 庞孟昌, 戚永颖. 着力构建多边合作共赢的东北亚天然气和管道合作机制——第十三届东北亚天然气和管道国际大会综述[J]. 国际石油经济, 2013, (9):34-46. PANG M C, QI Y Y. Work hard to build a multilateral cooperative mechanism for natural gas and pipelines for win-win cooperation-the thirteenth international conference on natural gas and pipelines in northeast Asia[J]. International Petroleum Economics, 2013, (9):34-46. |
[3] | 武宏香, 赵增立, 王小波, 等. 生物质气化制备合成天然气技术的研究进展[J]. 化工进展, 2013, 32(1):83-90. WU H X, ZHAO Z L, WANG X B, et al. Technical development on synthetic natural gas production from biomass[J]. Chemical Industry and Engineering Progress, 2013, 32(1):83-90. |
[4] | ARAKI M, PONEC V. Methanation of carbon monoxide on nickel and nickel-copper alloys[J]. Journal of Catalysis, 1976, 44(3):439-448. |
[5] | GUPTA N M, KAMBLE V S, RAO K A, et al. Mechanism of CO and CO2 methanation over Ru-molecular-sieve catalyst[J]. Journal of Catalysis, 1979, 60(1):57-67. |
[6] | FUJITA S, NAKAMURA M, DOI T, et al. Mechanisms of methanation of carbon-dioxide and carbon-monoxide over nickel alumina catalysts[J]. Applied Catalysis A-General, 1993, 104(1):87-100. |
[7] | SEHESTED J, DAHL S, JACOBSEN J, et al. Methanation of CO over nickel:mechanism and kinetics at high H2/CO ratios[J]. The Journal of Physical Chemistry B, 2005, 109(6):2432-2438. |
[8] | ENGBÆK J, LYTKEN O, NIELSEN J H, et al. CO dissociation on Ni:the effect of steps and of nickel carbonyl[J]. Surface Science, 2008, 602(3):733-743. |
[9] | POLIZZOTTI R S, SCHWARZ J A. Hydrogenation of CO to methane:kinetic studies on polycrystalline nickel foils[J]. Journal of Catalysis, 1982, 77(1):1-15. |
[10] | ECKLE S, ANFANG H, BEHM R J. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases[J]. The Journal of Physical Chemistry C, 2011, 115(4):1361-1367. |
[11] | PANAGIOTOPOULOU P, KONDARIDES D I, VERYKIOS X E. Mechanistic study of the selective methanation of CO over Ru/TiO2 catalyst:identification of active surface species and reaction pathways[J]. The Journal of Physical Chemistry C, 2011, 115(4):1220-1230. |
[12] | HAN X, YANG J, GUO H, et al. Mechanism studies concerning carbon deposition effect of CO methanation on Ni-based catalyst through DFT and TPSR methods[J]. International Journal of Hydrogen Energy, 2016, 41(20):8401-8411. |
[13] | WANG Y, SU Y, ZHU M, et al. Mechanism of CO methanation on the Ni4/γ-Al2O3 and Ni3Fe/γ-Al2O3 catalysts:a density functional theory study[J]. International Journal of Hydrogen Energy, 2015, 40(29):8864-8876. |
[14] | WEATHERBEE G D, BARTHOLOMEW C H. Hydrogenation of CO2 on group-Ⅷmetals(Ⅱ):Kinetics and mechanism of CO2 hydrogenation on nickel[J]. Journal of Catalysis, 1982, 77(2):460-472. |
[15] | PEEBLES D E, GOODMAN D W, WHITE J M. Methanation of carbon-dioxide on Ni(100) and the effects of surface modifiers[J]. The Journal of Physical Chemistry, 1983, 87(22):4378-4387. |
[16] | PRAIRIE M R, RENKEN A, HIGHFIELD J G. A Fourier-transform infrared spectroscopic study of CO2 methanation on supported ruthernium[J]. Journal of Catalysis, 1991, 129(1):130-144. |
[17] | KIM H Y, LEE H M, PARK J. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst:independent roles of MgO and Pd on CO2 methanation[J]. The Journal of Physical Chemistry C, 2010, 114(15):7128-7131. |
[18] | PAN Q, PENG J, SUN T, et al. Insight into the reaction route of CO2 methanation:promotion effect of medium basic sites[J]. Catalysis Communications, 2014, 45:74-78. |
[19] | GAO J, JIA C, ZHANG M, et al. Effect of nickel nanoparticle size in Ni/alpha-Al2O3 on CO methanation reaction for the production of synthetic natural gas[J]. Catalysis Science & Technology, 2013, 3(8):2009-2015. |
[20] | MA S, TAN Y, HAN Y. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts[J]. Journal of Natural Gas Chemistry, 2011, 20(4):435-440. |
[21] | ZHANG Y, ZHANG G, WANG L, et al. Selective methanation of carbon monoxide over Ru-based catalysts in H2-rich gases[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(5):1590-1597. |
[22] | MENG F, ZHONG P, LI Z, et al. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation[J]. Journal of Chemistry, 2014, 2014:534842. |
[23] | CHEN X, JIN J, SHA G, et al. Silicon-nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation[J]. Catalysis Science & Technology, 2014, 4(1):53-61. |
[24] | LI P, ZHU M, DAN J, et al. Two-dimensional porous SiO2 nanomesh supported high dispersed Ni nanoparticles for CO methanation[J]. Chemical Engineering Journal, 2017, 326:774-780. |
[25] | TAKENAKA S, SHIMIZU T, OTSUKA K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts[J]. International Journal of Hydrogen Energy, 2004, 29(10):1065-1073. |
[26] | HWANG S, LEE J, HONG U G, et al. Hydrogenation of carbon monoxide to methane over mesoporous nickel-M-alumina(M=Fe, Ni, Co, Ce, and La) xerogel catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1):243-248. |
[27] | SENANAYAKE S D, EVANS J, AGNOLI S, et al. Water-gas shift and CO methanation reactions over Ni-CeO2(111) catalysts[J]. Topics in Catalysis, 2011, 54(1-4):34-41. |
[28] | STRUIS R P W J, SCHILDHAUER T J, CZEKAJ I, et al. Sulphur poisoning of Ni catalysts in the SNG production from biomass:a TPO/XPS/XAS study[J]. Applied Catalysis A-General, 2009, 362(1/2):121-128. |
[29] | GALLETTI C, SPECCHIA S, SARACCO G, et al. CO-selective methanation over Ru-γ-Al2O3 catalysts in H2-rich gas for PEM FC applications[J]. Chemical Engineering Science, 2010, 65(1):590-596. |
[30] | ABDEL-MAGEED A M, ECKLE S, ANFANG H G, et al. Selective CO methanation in CO2-rich H2 atmospheres over a Ru/zeolite catalyst:the influence of catalyst calcination[J]. Journal of Catalysis, 2013, 298:148-160. |
[31] | 董新法, 莫欣满, 林维明. 一种富氢气体中CO选择性甲烷化催化剂的制备方法:200710032526.8[P]. 2008-5-28. DONG X F, MO X M, LIN W M. Preparation of CO-selective methanation catalyst in a hydrogen rich gas:200710032526.8[P]. 2008-5-28. |
[32] | GOGATE M R, DAVIS R J. Comparative study of CO and CO2 hydrogenation over supported Rh-Fe catalysts[J]. Catalysis Communications, 2010, 11(10):901-906. |
[33] | FRØSETH V, STORSÆTER S, BORG Ø, et al. Steady state isotopic transient kinetic analysis(SSITKA) of CO hydrogenation on different Co catalysts[J]. Applied Catalysis A-General, 2005, 289(1):10-15. |
[34] | HERRANZ T, DENG X, CABOT A, et al. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy[J]. Journal of Physical Chemistry B, 2009, 113(31):10721-10727. |
[35] | 张李锋, 石悠, 赵斌元, 等. γ-Al2O3载体研究进展[J]. 材料导报, 2007, 21(2):67-71. ZHANG L F, SHI Y, ZHAO B Y, et al. Progress in research on γ-alumina catalyst carrier[J]. Material Review, 2007, 21(2):67-71. |
[36] | GAO Z, CUI L, MA H. Selective methanation of CO over Ni/Al2O3 catalyst:effects of preparation method and Ru addition[J]. International Journal of Hydrogen Energy, 2016, 41(12):5484-5493. |
[37] | 徐振刚, 罗伟, 王乃继, 等. 费托合成催化剂载体的研究进展[J]. 煤炭转化, 2008, 31(3):92-95. XU Z G, LUO W, WANG N J, et al. Research progress of carrier for Fischer-Tropsch synthesis catalyst[J]. Coal Conversion, 2008, 31(3):92-95. |
[38] | ZHAO B, CHEN Z, YAN X, et al. CO methanation over Ni/SiO2 catalyst prepared by ammonia impregnation and plasma decomposition[J]. Topics in Catalysis, 2017, 60(12/13/14):879-889. |
[39] | CHEN A, MIYAO T, HIGASHIYAMA K, et al. High catalytic performance of mesoporous zirconia supported nickel catalysts for selective CO methanation[J]. Catalysis Science & Technology, 2014, 4(8):2508-2511. |
[40] | SHIMODA N, SHOJI D, TANI K, et al. Role of trace chlorine in Ni/TiO2 catalyst for CO selective methanation in reformate gas[J]. Applied Catalysis B:Environmental, 2015, 174/175:486-495. |
[41] | ZYRYANOVA M M, SNYTNIKOV P V, GULYAEV R V, et al. Performance of Ni/CeO2 catalysts for selective CO methanation in hydrogen-rich gas[J]. Chemical Engineering Journal, 2014, 238(SI):189-197. |
[42] | MENG F, LI X, LI M, et al. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor[J]. Chemical Engineering Journal, 2017, 313:1548-1555. |
[43] | CHENG C, SHEN D, XIAO R, et al. Methanation of syngas(H2/CO) over the different Ni-based catalysts[J]. Fuel, 2017, 189:419-427. |
[44] | 周龙, 马丽萍, 陈建涛, 等. Ni/γ-Al2O3对二氧化碳加氢甲烷化的催化活性研究[J]. 化学世界, 2015, (1):16-21. ZHOU L, MA L P, CHEN J T, et al. Study on catalytic activity of Ni/γ-Al2O3 for CO2 methanation by hydrogenation[J]. Chemical World, 2015, (1):16-21. |
[45] | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation[J]. Applied Catalysis B-Environmental, 2014, 147:359-368. |
[46] | 刘泉. 水凝胶法制备Ni/ZrO2催化剂及其CO2加氢甲烷化性能研究[D]. 太原:太原理工大学, 2013. LIU Q. Ni/ZrO2 catalyst prepared by hydrogel method and its catalytic performance for methanation of carbon dioxide[D]. Taiyuan:Taiyuan University of Technology, 2013. |
[47] | LIU J, LI C, WANG F, et al. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst[J]. Catalysis Science & Technology, 2013, 3(10):2627-2633. |
[48] | ZHOU G, LIU H, CUI K, et al. Methanation of carbon dioxide over Ni/CeO2 catalysts:effects of support CeO2 structure[J]. International Journal of Hydrogen Energy, 2017, 42(25):16108-16117. |
[49] | RAHMANI S, REZAEI M, MESHKANI F. Preparation of promoted nickel catalysts supported on mesoporous nanocrystalline gamma alumina for carbon dioxide methanation reaction[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6):4176-4182. |
[50] | GARBARINO G, BELLOTTI D, RIANI P, et al. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure:catalysts activation, behaviour and stability[J]. International Journal of Hydrogen Energy, 2015, 40(30):9171-9182. |
[51] | PARK J, MCFARLAND E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2[J]. Journal of Catalysis, 2009, 266(1):92-97. |
[52] | ABE T, TANIZAWA M, WATANABE K, et al. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method[J]. Energy & Environmental Science, 2009, 2(3):315-321. |
[53] | ZHEN W, LI B, LU G, et al. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5via control of active species dispersion[J]. Chemical Communications, 2015, 51(9):1728-1731. |
[54] | ROENSCH S, SCHNEIDER J, MATTHISCHKE S, et al. Review on methanation-from fundamentals to current projects[J]. Fuel, 2016, 166:276-296. |
[55] | GARBARINO G, RIANI P, MAGISTRI L, et al. A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure[J]. International Journal of Hydrogen Energy, 2014, 39(22):11557-11565. |
[56] | JANKE C, DUYAR M S, HOSKINS M, et al. Catalytic and adsorption studies for the hydrogenation of CO2 to methane[J]. Applied Catalysis B-Environmental, 2014, 152/153:184-191. |
[57] | LI D, ICHIKUNI N, SHIMAZU S, et al. Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation[J]. Applied Catalysis A-General, 1998, 172(2):351-358. |
[58] | PANAGIOTOPOULOU P. Hydrogenation of CO2 over supported noble metal catalysts[J]. Applied Catalysis A-General, 2017, 542:63-70. |
[59] | BEULS A, SWALUS C, JACQUEMIN M, et al. Methanation of CO2:further insight into the mechanism over Rh/γ-Al2O3 catalyst[J]. Applied Catalysis B-Environmental, 2012, 113/114:2-10. |
[60] | KARELOVIC A, RUIZ P. CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts:effect of the metal particle size on catalytic performances and reaction mechanism[J]. Applied Catalysis B-Environmental, 2012, 113/114:237-249. |
[61] | MUROYAMA H, TSUDA Y, ASAKOSHI T, et al. Carbon dioxide methanation over Ni catalysts supported on various metal oxides[J]. Journal of Catalysis, 2016, 343(SI):178-184. |
[62] | RIANI P, GARBARINO G, LUCCHINI M A, et al. Unsupported versus alumina-supported Ni nanoparticles as catalysts for steam/ethanol conversion and CO2 methanation[J]. Journal of Molecular Catalysis A-Chemical, 2014, 383:10-16. |
[63] | XU L, WANG F, CHEN M, et al. Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation[J]. RSC Advances, 2017, 7(30):18199-18210. |
[64] | UBUKATA M, MITSUHASHI S, UEKI A, et al. Quality determination of nickel-loaded silica prepared from poaceous biomass[J]. Journal of Agricultural and Food Chemistry, 2010, 58(10):6312-6317. |
[65] | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles[J]. Applied Catalysis A-General, 2014, 486:115-122. |
[66] | AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over Ni-promoted mesostructured silica nanoparticles:influence of Ni loading and water vapor on activity and response surface methodology studies[J]. Chemical Engineering Journal, 2015, 260:757-764. |
[67] | KÖCK E, KOGLER M, BIELZ T, et al. In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2[J]. The Journal of Physical Chemistry C, 2013, 117(34):17666-17673. |
[68] | ZHAO K, WANG W, LI Z. Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation[J]. Journal of CO2 Utilization, 2016, 16:236-244. |
[69] | 周龙. Ni基催化剂二氧化碳加氢催化甲烷化研究[D]. 昆明:昆明理工大学, 2014. ZHOU L. Study on Ni catalytic hydrogenation of carbon dioxide for methane[D]. Kunming:Kunming University of Science and Technology, 2014. |
[70] | 罗来涛, 李松军, 邓庚凤, 等. 助剂对Ni/海泡石催化剂加氢性能的影响[J]. 分子催化, 2000, 14(1):46-50. LUO L T, LI S J, DENG G F, et al. Effect of promoters on the hydrogenation properties of Ni/sepiolite catalysts[J]. Journal of Molecular Catalysis, 2000, 14(1):46-50. |
[71] | ABATE S, BARBERA K, GIGLIO E, et al. Synthesis, characterization, and activity pattern of Ni-Al hydrotalcite catalysts in CO2 methanation[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8299-8308. |
[72] | MUTZ B, CARVALHO H W P, MANGOLD S, et al. Methanation of CO2:structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy[J]. Journal of Catalysis, 2015, 327:48-53. |
[73] | 高晓庆. Ni-Mn/γ-Al2O3催化剂的制备、表征及其CO2甲烷化研究[D]. 太原:山西大学, 2011. GAO X Q. Preparation, characterization and catalytic activity of Ni-Mn/γ-Al2O3 catalyst for CO2 methanation[D]. Taiyuan:Shanxi University, 2011. |
[74] | PANDEY D, DEO G. Effect of support on the catalytic activity of supported Ni-Fe catalysts for the CO2 methanation reaction[J]. Journal of Industrial and Engineering Chemistry, 2016, 33:99-107. |
[75] | CAI M, WEN J, CHU W, et al. Methanation of carbon dioxide on Ni/ZrO2-Al2O3 catalysts:effects of ZrO2 promoter and preparation method of novel ZrO2-Al2O3 carrier[J]. Journal of Natural Gas Chemistry, 2011, 20(3):318-324. |
[76] | ZHOU L, WANG Q, MA L, et al. CeO2 promoted mesoporous Ni/g-Al2O3 catalyst and its reaction conditions for CO2 methanation[J]. Catalysis Letters, 2015, 145(2):612-619. |
[77] | TADA S, OCHIENG O J, KIKUCHI R, et al. Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2014, 39(19):10090-10100. |
[78] | CHOUDHURY M B I, AHMED S, SHALABI M A, et al. Preferential methanation of CO in a syngas involving CO2 at lower temperature range[J]. Applied Catalysis a:General, 2006, 314(1):47-53. |
[79] | ECKLE S, ANFANG H, BEHM R J. What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts?[J]. Applied Catalysis A-General, 2011, 391(1/2SI):325-333. |
[80] | 熊伟, 定明月, 涂军令, 等. 不同载体Ni基催化剂生物质热解气甲烷化反应性能[J]. 燃料化学学报, 2014, 42(8):958-964. XIONG W, DING M Y, TU J L, et al. Methanation of biomass pyrolysis gas over Ni catalyst with different supports[J]. Journal of Fuel Chemistry and Technology, 2014, 42(8):958-964. |
[81] | 刘婕, 张盼盼, 詹天, 等. Ni-CeO2/Al2O3催化剂的制备、表征及其生物质合成气甲烷化性能研究[J]. 化学与生物工程, 2016, 33(8):19-26. LIU J, ZHANG P P, ZHAN T, et al. Preparation and characterization of Ni-CeO2/Al2O3 and its catalytic performance for methanation of biomass syngas[J]. Chemical and Biological Engineering, 2016, 33(8):19-26. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[10] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[11] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[12] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||