化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1120-1126.DOI: 10.11949/j.issn.0438-1157.20180916
收稿日期:
2018-08-13
修回日期:
2018-11-30
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
赵军
作者简介:
<named-content content-type="corresp-name">周钰寒</named-content>(1994—),男,硕士研究生,<email>15650163237@163.com</email>|赵军(1980—),男,博士,讲师,<email>zhaojunqust@163.com</email>
基金资助:
Yuhan ZHOU1(),Xiaoyu CHEN1,Cheng ZUO1,Qingjie GUO1,2,Jun ZHAO1()
Received:
2018-08-13
Revised:
2018-11-30
Online:
2019-03-05
Published:
2019-03-05
Contact:
Jun ZHAO
摘要:
对废纸纤维素进行处理,以甲基三甲氧基硅烷(MTMS)作为硅源,制备纤维素/SiO2复合水凝胶,经过冷冻干燥得到性能良好的纤维素/SiO2复合气凝胶。利用扫描电镜(SEM)、接触角测量仪及热重分析(TGA)等对制得的气凝胶进行了表征测试。结果显示材料由大孔、介孔、微孔组成,最低密度为0.107 g/cm3,具有较好的疏水性能,静态疏水接触角可达148.5°,力学性能良好,可实现50%范围内压缩后100%恢复,材料具备良好的吸附性能,吸附油污可达到本身质量的12.7倍,热稳定性提高。在处理有机废水,尤其是水体油污方面有着广阔的应用前景。
中图分类号:
周钰寒, 陈晓玉, 左成, 郭庆杰, 赵军. 废纸纤维素/SiO2复合气凝胶的性能[J]. 化工学报, 2019, 70(3): 1120-1126.
Yuhan ZHOU, Xiaoyu CHEN, Cheng ZUO, Qingjie GUO, Jun ZHAO. Performances of waste paper cellulose/SiO2 composite aerogel[J]. CIESC Journal, 2019, 70(3): 1120-1126.
Sample number | Cellulose content/%(mass) | pH | Density/(g/cm3) | Porosity/% |
---|---|---|---|---|
1 | 5 | 4 | 0.167 | 78.6 |
2 | 10 | 4 | 0.146 | 82.7 |
3 | 15 | 4 | 0.122 | 89.2 |
4 | 20 | 4 | 0.107 | 91.5 |
5 | 20 | 7 | 0.102 | 90.4 |
6 | 20 | 10 | 0.104 | 90.1 |
表1 纤维素含量和pH对复合气凝胶材料的影响
Table 1 Influence of cellulose content and pH on aerogel materials
Sample number | Cellulose content/%(mass) | pH | Density/(g/cm3) | Porosity/% |
---|---|---|---|---|
1 | 5 | 4 | 0.167 | 78.6 |
2 | 10 | 4 | 0.146 | 82.7 |
3 | 15 | 4 | 0.122 | 89.2 |
4 | 20 | 4 | 0.107 | 91.5 |
5 | 20 | 7 | 0.102 | 90.4 |
6 | 20 | 10 | 0.104 | 90.1 |
图1 不同纤维素含量和pH制备纤维素/SiO2复合气凝胶材料的扫描电镜图
Fig.1 SEM of cellulose/SiO2 composite aerogel material with different cellulose content and different hydrolysis pH
1 | DaltonT, JinD. Extent and frequency of vessel oil spills in US marine protected areas[J]. Marine Pollution Bulletin, 2010, 60(11):1939. |
2 | BiH C, XieX, YinK B, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents[J]. Advanced Function Material, 2012, 22(21): 4421-4425. |
3 | AnnunciadoT R, SydenstrickerT H, AmicoS C. Experimental investigation of various vegetable fibers as sorbent materials for oil spills[J]. Marine Pollution Bulletin, 2005, 50(11): 1340-1346. |
4 | BayatA, AghamiriS F, MohebA, et al. Oil spill cleanup from sea water by sorbent materials[J]. Chemical Engineering Technology, 2005, 28(12): 1525-1528. |
5 | ZhuQ, PanQ, LiuF. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges[J]. Journal of Physical Chemistry C, 2011, 115(35): 17464-17470. |
6 | LermontovS A. Methyltrimethoxysilane-based elastic aerogels: effects of the supercritical medium on structure-sensitive properties[J]. Russian Journal of Inorganic Chemistry, 2015, 60(4): 488-492. |
7 | FidalgoA, FarinhaJ P S, MartinhoJ M G, et al. Flexible hybrid aerogels prepared under subcritical conditions[J]. Journal of Material Chemistry A, 2013, 1(39): 12044-12052. |
8 | YuY, WuX, GuoD, et al. Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor[J]. Journal of Material Science, 2014, 49(22): 7715-7722. |
9 | KettunenM, SilvennoinenR J, HoubenovN, et al. Photoswitchable superabsorbency based on nanocellulose aerogels[J]. Advanced Functional Materials, 2011, 21(3): 510-517. |
10 | SaiH Z, XingL, XiangJ H, et al. Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process[J]. Journal of Materials Chemistry A, 2013, 1(27): 7963-7970. |
11 | 马书荣, 米勤勇, 余坚, 等. 基于纤维素的气凝胶材料[J]. 化学进展, 2014, 26(5): 796-809. |
MaS R, MiQ Y, YuJ, et al. Aerogel materials based on cellulose[J]. Progress in Chemistry, 2014, 26(5): 796-809. | |
12 | FeiH, SuiC, YangG, et al. Fabrication of hydrophobic silica-cellulose aerogels by using dimethyl sulfoxide(DMSO) as solvent[J]. Materials Letters, 2014, 137(137): 167-169. |
13 | 刘昕昕, 刘志明. 疏水纤维素/SiO2复合气凝胶的制备和表征[J]. 生物质化学工程, 2016, 50(2): 39-44. |
LiuX X, LiuZ M. Preparation and characterization of hydrophobic cellulose/SiO2 composite aerogel[J]. Biomass Chemical Engineering , 2016, 50(2): 39-44. | |
14 | ShiJ J, LuL B, GuoW T, et al. Heatinsulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels [J]. Carbohydrate Polymers, 2013, 98(1): 2118-2121. |
15 | HeM, DuanB, XuD F, et al. Moisyure and solvent responsive cellulose/SiO2 nanocomposite materials[J]. Cellulose, 2015, 22(1): 553-563. |
16 | EgalM, BudtovaT, NavardP. The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions[J]. Cellulose, 2008, 15(3): 361. |
17 | KobayashiY, SaitoT, IsogaiA. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators[J]. Angewandte Chemie International Edition, 2015, 53(39): 10253-10253. |
18 | 李慧媛, 吴清林, 周定国. 纳米二氧化硅/纳米纤维素复合材料制备及性能分析[J]. 农业工程学报, 2015, 31(7): 299-303. |
LiH Y, WuQ L, ZhouD G. Preparation and performance analysis of nanosilica/cellulose composites[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 299-303. | |
19 | 莫尊理, 赵仲丽, 陈红, 等. 纳米SiO2/纤维素复合材料的非均相制备及其性能[J]. 复合材料学报, 2008, 25(4): 24-28. |
MoZ L, ZhaoZ L, ChenH, et al. Heterogeneous preparation and properties of nano-SiO2/cellulose composites[J]. Acta Materiae Compositae Sinica, 2008, 25(4): 24-28. | |
20 | 柏正武, 徐小琴, 金芬芬, 等. 纤维素-二氧化硅复合颗粒的制备与表征[J]. 武汉工程大学学报, 2013, 35(2): 11-15. |
BoZ W, XuX Q, JinF F, et al. Preparation and characterization of cellulose-SiO2 composite beads[J]. Journal of Wuhan Institute of Technology, 2013, 35(2): 11-15. | |
21 | 卿彦, 吴义强, 秦志永, 等. SiO2/杨木复合材料制备与性能评价[J]. 复合材料学报, 2011, 28(6): 125-131. |
QingY, WuY Q, QinZ Y, et al. Preparation and performance evaluation of SiO2/poplar wood composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 125-131. | |
22 | NguyenB N, MeadorM A, TousleyM E, et al. Tailoring elastic properties of siliea aerogels cross-linked with polystyrene[J]. ACS Applied Materials and Interfaces, 2009, 1(3): 621-630. |
23 | PourG, BeaugerC, RigacciA, et al. Xerocellulose: lightweight, porous and hydrophobic cellulose prepared via ambient drying[J]. Journal of Materials Science, 2015, 50(13): 4526-4535. |
24 | 林冲, 张锡东, 何边阳. 疏水性纤维素气凝胶的制备及性能研究[J]. 海南大学学报(自然科学版), 2015, 33(4): 353-358. |
LinC, ZhangX D, HeB Y. Synthesis and characterization of hydrophobic cellulose aerogel[J]. Natural Sciences Journal of Hainan University, 2015, 33(4): 353-358. | |
25 | 李飞, 邢丽, 向军辉, 等. 疏水性纤维素-SiO2复合气凝胶的非超临界制备[J]. 稀有金属材料与工程, 2015, 44(S1): 647-650. |
LiF, XingL, XiangJ H, et al. Hydrophobic cellulose-SiO2 composite aerogel prepared by a non-supercritical drying process[J]. Rare Metal Materials and Engineering, 2015, 44(S1): 647-650. | |
26 | HeJ, ZhaoH Y, LiX L, et al. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery[J]. Journal of Hazardous Materials, 2018, 346: 199-207. |
27 | YuanJ, LiuX, AkbulutO, et al. Superwetting nanowire membranes for selective absorption[J]. Nature Nanotechnology, 2008, 3(6): 332-336. |
28 | HayaseG, KanamoriK, FukuchiM, et al. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water[J]. Angewandte Chemie, 2013, 52(7): 1986-1989. |
29 | 张颖. 高比表面积稻壳基活性炭制备及其在废水处理中应用研究[D]. 长沙: 中南大学, 2012. |
ZhangY. Preparation of high specific surface area rice hull based activated carbon and its application in wastewater treatment[D]. Changsha: Central South University, 2012. | |
30 | 黄辉. 活性炭吸附法去除水中硒的研究[D]. 昆明: 昆明理工大学, 2005. |
HuangH. Studying on removal of selenium from water by activated carbon process[D]. Kunming: Kunming University of Science and Technology, 2005. | |
31 | 齐菊锐, 李陟, 许宏鼎, 等. 多孔炭的物理化学性能对其吸附性能的影响[J]. 吉林大学学报(理学版), 2005, 43(1): 95-100. |
QiJ R, LiZ, XuH D, et al. Effect of physicochemical characteristic of porous carbon on its performance of adsorption[J]. Journal of Jilin University (Science Edition), 2005, 43(1): 95-100. | |
32 | 刘大中, 王锦. 物理吸附与化学吸附[J]. 山东轻工业学院学报(自然科学版), 1999, (2): 22-25. |
LiuD Z, WangJ. Physisorption and chemisorption[J]. Journal of Shandong Polytechnic University, 1999, (2): 22-25. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[3] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[4] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[5] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[6] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[7] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[8] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[9] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[10] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[11] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[12] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[15] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||