化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1823-1831.DOI: 10.11949/j.issn.0438-1157.20181389
段继海1(),黄帅彪1,2,高昶1,2,陈阿强2,黄青山2,3()
收稿日期:
2018-11-20
修回日期:
2019-02-26
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
黄青山
作者简介:
<named-content content-type="corresp-name">段继海</named-content>(1970—),男,博士,副教授,<email>duanjihai@qust.edu.cn</email>|黄青山(1978—),男,博士,研究员,<email>qshuang@ipe.ac.cn</email>
基金资助:
Jihai DUAN1(),Shuaibiao HUANG1,2,Chang GAO1,2,Aqiang CHEN2,Qingshan HUANG2,3()
Received:
2018-11-20
Revised:
2019-02-26
Online:
2019-05-05
Published:
2019-05-05
Contact:
Qingshan HUANG
摘要:
设计了一种新型锥体切向开缝结构的水力旋流器,并针对锥体开缝长度、位置、数量以及开缝型式对水力旋流器分离性能的影响开展了实验研究。研究结果表明:锥体开缝会使水力旋流器的压降大幅降低;开缝长度由10 mm增大到50 mm的过程中,分离效率呈现先增大后减小的趋势,开缝长度为20 mm时最佳;第二条缝隙的开缝位置由锥体底部向上移动的过程中,分离效率也呈现出先增大后减小的趋势,距底部缝隙80 mm时分离效率最高;保持出口截面积不变,在底部开6 mm长的缝隙,另外在最佳开缝位置处开一条长缝隙时的分离效率最高,且与底部缝隙呈反方向分布是最优的开缝型式,与常规水力旋流器对比,在高流量下其分离效率仅降低了1.48%,但压降降低可达36.84%,节能效果显著,具有重要的应用价值。
中图分类号:
段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
Jihai DUAN, Shuaibiao HUANG, Chang GAO, Aqiang CHEN, Qingshan HUANG. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance[J]. CIESC Journal, 2019, 70(5): 1823-1831.
Type | Cones with different slits structure | ||||
---|---|---|---|---|---|
a/mm | b/mm | c/mm | a'/mm | c'/mm | |
A | 0 | 0 | 0 | 0 | 0 |
B | 26 | 0 | 0 | 26 | 0 |
C | 10 | 0 | 0 | 10 | 0 |
D | 20 | 0 | 0 | 20 | 0 |
E | 30 | 0 | 0 | 30 | 0 |
F | 40 | 0 | 0 | 40 | 0 |
G | 50 | 0 | 0 | 50 | 0 |
H | 6 | 20 | 20 | 6 | 20 |
I | 6 | 40 | 20 | 6 | 20 |
J | 6 | 80 | 20 | 6 | 20 |
K | 6 | 120 | 20 | 6 | 20 |
L | 6 | 160 | 20 | 6 | 20 |
M | 6 | 200 | 20 | 6 | 20 |
N | 6 | 80 | 46 | 0 | 0 |
O | 6 | 80 | 0 | 0 | 46 |
P | 6 | 80 | 40 | 6 | 0 |
表1 锥体开缝结构编号及对应尺寸
Table 1 Serial numbers defined for different slit-cones
Type | Cones with different slits structure | ||||
---|---|---|---|---|---|
a/mm | b/mm | c/mm | a'/mm | c'/mm | |
A | 0 | 0 | 0 | 0 | 0 |
B | 26 | 0 | 0 | 26 | 0 |
C | 10 | 0 | 0 | 10 | 0 |
D | 20 | 0 | 0 | 20 | 0 |
E | 30 | 0 | 0 | 30 | 0 |
F | 40 | 0 | 0 | 40 | 0 |
G | 50 | 0 | 0 | 50 | 0 |
H | 6 | 20 | 20 | 6 | 20 |
I | 6 | 40 | 20 | 6 | 20 |
J | 6 | 80 | 20 | 6 | 20 |
K | 6 | 120 | 20 | 6 | 20 |
L | 6 | 160 | 20 | 6 | 20 |
M | 6 | 200 | 20 | 6 | 20 |
N | 6 | 80 | 46 | 0 | 0 |
O | 6 | 80 | 0 | 0 | 46 |
P | 6 | 80 | 40 | 6 | 0 |
图3 两种不同物料下进口流速对传统和锥体开缝水力旋流器分离效率和压降的影响
Fig.3 Influence of fluid inlet velocity on separation efficiency and pressure drop with two different solid materials in traditional and slit-cone hydrocyclones
图6 不同开缝数量及开缝形式下进口流速对分离效率和压降的影响
Fig.6 Influence of fluid inlet velocity on separation efficiency and pressure drop with different slit numbers and styles
1 | Bradley D . The Hydrocyclone: International Series of Monographs in Chemical Engineering[M]. Pergamon, London: Elsevier, 2013. |
2 | Svarovsky L , Thew M . Hydrocyclones: Analysis and Applications[M]. Letchworth, UK: Springer Science & Business Media, 2013. |
3 | Svarovsky L . Solid-Liquid Separation[M]. London, UK: Elsevier, 2000. |
4 | Vieira L G M , Damasceno J J R , Barrozo M A S . Improvement of hydrocyclone separation performance by incorporating a conical filtering wall[J]. Chemical Engineering and Processing, 2010, 49(5): 460-467. |
5 | Mognon J L , da Silva J M , Bicalho I C , et al . Modular mini-hydrocyclone desilter type of 30 mm: an experimental and optimization study[J]. Journal of Petroleum Science and Engineering, 2015, 129: 145-152. |
6 | Zhao L , Jiang M H , Xu B , et al . Development of a new type high-efficient inner-cone hydrocyclone[J]. Chemical Engineering Research and Design, 2012, 90(12): 2129-2134. |
7 | Zhao L , Li Y , Xu B , et al . Design and numerical simulation analysis of an integrative gas-liquid-solid separation hydrocyclone [J]. Chemical Engineering & Technology, 2015, 38(12): 2146-2152. |
8 | 马艺, 王振波, 金有海 . 导叶式液液旋流器内油相浓度分布数值模拟[J]. 化工学报, 2011, 62(2): 420-426. |
Ma Y , Wang Z B , Jin Y H . Simulation of oil-phase concentration field in vane-guided hydrocyclone[J]. CIESC Journal, 2011, 62(2): 420-426. | |
9 | 马艺, 金有海, 王振波 . 两种不同入口结构型式旋流器内的流场模拟[J]. 化工进展, 2009, 28(S1): 497-501. |
Ma Y , Jin Y H , Wang Z B . Simulation the flow field in hydrocyclone with two different kinds of inlet structure[J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 497-501. | |
10 | Xu Y X , Liu Y , Zhang Y H , et al . Effect of shear stress on deoiling of oil-contaminated catalysts in a hydrocyclone[J]. Chemical Engineering & Technology, 2016, 39(3): 567-575. |
11 | Huang Q S , Yang C , Yu G Z , et al . CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model[J]. Chemical Engineering Science, 2010, 65(20): 5527-5536. |
12 | 黄青山, 张伟鹏, 杨超, 等 . 环流反应器的流动, 混合与传递特性[J]. 化工学报, 2014, 65(7): 2465-2473. |
Huang Q S , Zhang W P , Yang C , et al . Characteristics of multiphase flow, mixing and transport phenomena in airlift loop reactor[J]. CIESC Journal, 2014, 65(7): 2465-2473. | |
13 | Chu K , Chen J , Yu A B , et al . Numerical studies of multiphase flow and separation performance of natural medium cyclones for recovering waste coal[J]. Powder Technology, 2017, 314: 532-541. |
14 | Huang Q S , Zhang W P , Yang C . Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction[J]. Chemical Engineering Science, 2015, 135: 441-451. |
15 | 王剑刚, 张艳红, 白兆圆, 等 . 进口尺寸对旋转流场分离特征的影响[J]. 化工学报, 2014, 65(1): 205-212. |
Wang J G , Zhang Y H , Bai Z Y , et al . Effect of inlet size on separation flow field inside hydrocyclone[J]. CIESC Journal, 2014, 65(1): 205-212. | |
16 | Wang H L , Zhang Y H , Wang J G , et al . Cyclonic separation technology: researches and developments[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 212-219. |
17 | Son J H , Hong M , Yoo H C , et al . A multihydrocyclone water pretreatment system to reduce suspended solids and the chemical oxygen demand[J]. Desalination and Water Treatment, 2016, 57(7): 2996-3001. |
18 | Yu J F , Fu J , Cheng H , et al . Recycling of rare earth particle by mini-hydrocyclones[J]. Waste Management, 2017, 61: 362-371. |
19 | Cullivan J , Williams R , Dyakowski T , et al . New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics[J]. Minerals Engineering, 2004, 17(5): 651-660. |
20 | Xu Y , Song X , Sun Z , et al . Simulation analysis of multiphase flow and performance of hydrocyclones at different atmospheric pressures[J]. Industrial & Engineering Chemistry Research, 2011, 51(1): 443-453. |
21 | Wang L Y , Zheng Z C , Wu Y X , et al . Numerical and experimental study on liquid-solid flow in a hydrocyclone[J]. Journal of Hydrodynamics, 2009, 21(3): 408-414. |
22 | Olson T , van Ommen R . Optimizing hydrocyclone design using advanced CFD model[J]. Minerals Engineering, 2004, 17(5): 713-720. |
23 | Santos S , Jones K , Abdul R , et al . Treatment of wet process hardboard plant VOC emissions by a pilot scale biological system[J]. Biochemical Engineering Journal, 2007, 37(3): 261-270. |
24 | Guo X , Yao L S , Huang Q S . Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae[J]. Bioresource Technology, 2015, 190: 189-195. |
25 | Huang Q S , Jiang F H , Wang L Z , et al . Design of photobioreactors for mass cultivation of photosynthetic organisms[J]. Engineering, 2017, 3(3): 318-329. |
26 | Neesse T , Dueck J , Schwemmer H , et al . Using a high pressure hydrocyclone for solids classification in the submicron range[J]. Minerals Engineering, 2015, 71: 85-88. |
27 | Fan P P , Peng H T , Fan M Q . Using a permanent magnetic field to manipulate the separation effect of a dense medium cyclone[J]. Separation Science and Technology, 2016, 51(11): 1913-1923. |
28 | Yang T , Geng S J , Yang C , et al . Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification[J]. Chemical Engineering Science, 2018, 184: 126-133. |
29 | Hwang K J , Hwang Y W , Yoshida H . Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics[J]. Chemical Engineering Science, 2013, 85: 62-68. |
30 | Mokni I , Dhaouadi H , Bournot P , et al . Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone[J]. Chemical Engineering Science, 2015, 122: 500-513. |
31 | 刘鸿雁, 王亚, 韩天龙, 等 . 水力旋流器溢流管结构对微细颗粒分离的影响[J]. 化工学报, 2017, 68(5): 1921-1931. |
Liu H Y , Wang Y , Han T L , et al . Influence of vortex finder configurations on the separation of fine particles[J]. CIESC Journal, 2017, 68(5): 1921-1931. | |
32 | Ni L , Tian J , Zhao J . Experimental study of the effect of underflow pipe diameter on separation performance of a novel de-foulant hydrocyclone with continuous underflow and reflux function[J]. Separation and Purification Technology, 2016, 171: 270-279. |
33 | 刘鸿雁, 韩天龙, 王亚, 等 . 水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088. |
Liu H Y , Han T L , Wang Y , et al . Influence of new outlet configurations on hydrocyclone separation performance[J]. CIESC Journal, 2018, 69(5): 2081-2088. | |
34 | Hamdy O , Bassily M A , El-Batsh H M , et al . Numerical study of the effect of changing the cyclone cone length on the gas flow field[J]. Applied Mathematical Modelling, 2017, 46: 81-97. |
35 | Monredon T , Hsieh K , Rajamani R . Fluid flow model of the hydrocyclone: an investigation of device dimensions[J]. International Journal of Mineral Processing, 1992, 35(1/2): 65-83. |
36 | Vakamalla T R , Koruprolu V B R , Arugonda R , et al . Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model[J]. Separation and Purification Technology, 2017, 175: 481-497. |
37 | Chu L Y , Chen W M , Lee X Z . Effect of structural modification on hydrocyclone performance[J]. Separation and Purification Technology, 2000, 21(1/2): 71-86. |
38 | Huang A N , Ito K , Fukasawa T , et al . Classification performance analysis of a novel cyclone with a slit on the conical part by CFD simulation[J]. Separation and Purification Technology, 2018, 190: 25-32. |
39 | Mazyan W , Ahmadi A , Brinkerhoff J , et al . Enhancement of cyclone solid particle separation performance based on geometrical modification: numerical analysis[J]. Separation and Purification Technology, 2018, 191: 276-285. |
40 | 张立英, 黄青山 . 气升式环流反应器的理论研究进展[J]. 过程工程学报, 2011, 11(1): 162-173. |
Zhang L Y , Huang Q S . Research progress in the modeling theory of airlift loop reactor[J]. The Chinese Journal of Process Engineering, 2011, 11(1): 162-173. | |
41 | Huang Q S , Yang C , Yu G Z , et al . 3-D simulations of an internal airlift loop reactor using a steady two‐fluid model[J]. Chemical Engineering & Technology, 2007, 30(7): 870-879. |
42 | Huang Q S , Yang C , Yu G Z , et al . Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model[J]. Chemical Engineering & Technology, 2008, 31(12): 1790-1798. |
43 | Yang C , Mao Z S . Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase[M]. Amsterdam: Academic Press, 2014. |
44 | 金国淼 . 除尘设备设计[M]. 北京: 化学工业出版社, 2002. |
Jin G M . Design of Dust Removal Equipment[M]. Beijing: Chemical Industry Press, 2002. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[12] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[13] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||