化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 181-190.DOI: 10.119494/0438-1157.20190175
李勇1(),刘飞2(
),董海峰3,张香平3,陈靖容1,刘仁材1,金劭2,吴战鹏2,王晓东1(
)
收稿日期:
2019-03-03
修回日期:
2019-04-22
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
王晓东
作者简介:
李勇(1991—),男,硕士研究生,基金资助:
Yong LI1(),Fei LIU2(
),Haifeng DONG3,Xiangping ZHANG3,Jingrong CHEN1,Rencai LIU1,Shao JIN2,Zhanpeng WU2,Xiaodong WANG1(
)
Received:
2019-03-03
Revised:
2019-04-22
Online:
2019-09-06
Published:
2019-09-06
Contact:
Xiaodong WANG
摘要:
使用自研的微颗粒实时在线监测仪对微颗粒在液相中的悬浮和沉降过程进行了在线定量测量研究。首先,通过与商用离线仪器Multisizer 4e的对比验证了自研的微颗粒监测仪实时、在线测量的可靠性。然后,选用了标准物质乳胶微球、Al2O3和 ZrO2三种密度不同的百微米量级的微颗粒,对磁力搅拌器中稳定转速下的悬浮特性以及搅拌停止后颗粒的重力沉降过程进行实时在线观测,得到了这两种情形下测量点的颗粒浓度和粒度分布信息。实验结果表明,即使搅拌速度超过临界悬浮转速,搅拌容器中的Al2O3颗粒仍存在不同程度的非均匀分布状态,呈现出一定的浓度和粒度分布。在重力沉降的瞬变过程中,固体颗粒的粒径和密度在固液两相分离的过程中有着显著的作用。
中图分类号:
李勇, 刘飞, 董海峰, 张香平, 陈靖容, 刘仁材, 金劭, 吴战鹏, 王晓东. 微颗粒实时在线监测仪在固液体系测量中的应用[J]. 化工学报, 2019, 70(S2): 181-190.
Yong LI, Fei LIU, Haifeng DONG, Xiangping ZHANG, Jingrong CHEN, Rencai LIU, Shao JIN, Zhanpeng WU, Xiaodong WANG. Application of micro particle real-time online analyzer in solid-liquid system measurement[J]. CIESC Journal, 2019, 70(S2): 181-190.
分类 | 测量方法 | 局限性 |
---|---|---|
非接触式方法 | 激光散射法,激光束图像分析法,光束衰减法 | 要求反应容器和液相透明,限制工业应用 |
粒子图像测速技术,激光多普勒测速技术,超声多普勒测速技术 | 只能直接获取颗粒速度信息 | |
接触式方法 | 取样法 | 迟滞性,非等动力取样 |
电导法 | 要求高纯度液相和恒温,限制工业应用 | |
光学探针法 | 只能获得局部区域的平均值 |
表1 测量方法对比
Table 1 Comparison of measurement methods
分类 | 测量方法 | 局限性 |
---|---|---|
非接触式方法 | 激光散射法,激光束图像分析法,光束衰减法 | 要求反应容器和液相透明,限制工业应用 |
粒子图像测速技术,激光多普勒测速技术,超声多普勒测速技术 | 只能直接获取颗粒速度信息 | |
接触式方法 | 取样法 | 迟滞性,非等动力取样 |
电导法 | 要求高纯度液相和恒温,限制工业应用 | |
光学探针法 | 只能获得局部区域的平均值 |
图3 利用自研微颗粒实时在线监测仪测得的两种标称尺寸乳胶标准微颗粒的分布
Fig.3 Distribution of two latex particle reference materials measured by self-developing micro particle real-time online monitor
颗粒名称 | 关键物性 | 生产单位 |
---|---|---|
乳胶标准微颗粒 | 粒度分布:标称值 120 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
乳胶标准微颗粒 | 粒度分布:标称值160 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
球形Al2O3颗粒CAP 90① | 粒度D50:90 μm;密度:3.5 g/cm3 | 南京天行新材料有限公司 |
ZrO2颗粒 | 粒度D50:100 μm;密度:5.85 g/cm3 | 浙江湖州湖磨有限公司 |
表2 三种选用的固体颗粒尺寸和物性参数
Table 2 Particle sizes and physical parameters selected in experiment
颗粒名称 | 关键物性 | 生产单位 |
---|---|---|
乳胶标准微颗粒 | 粒度分布:标称值 120 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
乳胶标准微颗粒 | 粒度分布:标称值160 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
球形Al2O3颗粒CAP 90① | 粒度D50:90 μm;密度:3.5 g/cm3 | 南京天行新材料有限公司 |
ZrO2颗粒 | 粒度D50:100 μm;密度:5.85 g/cm3 | 浙江湖州湖磨有限公司 |
1 | BarresiA, BaldiG. Solid dispersion in an agitated vessel: effect of particle shape and density[J]. Chemical Engineering Science, 1987, 42(12): 2969-2972. |
2 | 杨锋苓, 周慎杰, 张翠勋, 等. 无挡板搅拌槽的固液悬浮特性[J]. 四川大学学报(工程科学版), 2014, 44(4): 185-190. |
YangF L, ZhouS J, ZhangC X, et al. Solid-liquid suspension in an unbaffled stirred tank[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 44(4): 185-190. | |
3 | NienowA W, MilesD. The effect of impeller/tank, configurations on fluid-particle mass transfer[J]. Chemical Engineering Journal, 1978, 15(1): 13-24. |
4 | KlenovO P, NoskovA S. Solid dispersion in the slurry reactor with multiple impellers[J]. Chemical Engineering Journal, 2011, 176(8): 75-82. |
5 | TagawaA, DohiN, KawaseY. Dispersion of floating solid particles in aerated stirred tank reactors: minimum impeller speeds for off-surface and ultimately homogeneous solid suspension and solids concentration profiles[J]. Industrial & Engineering Chemistry Research, 2006, 45(2): 818-829. |
6 | 李永纲, 黄雄斌. 立式圆槽内多轴搅拌器固-液悬浮性能[J]. 过程工程学报, 2012, 12(2): 181-186. |
LiY G, HuangX B. Solid-liquid suspension in a vertical three-impeller stirred tank[J]. The Chinese Journal of Process Engineering, 2012, 12(2): 181-186. | |
7 | ZwieteringT N. Suspending of solid particles in liquid by agitators[J]. Chemical Engineering Science, 1958, 8(3/4): 244-253. |
8 | RasteiroM G, FigueiredoM M, FreireC. Modelling slurry mixing tanks[J]. Advanced Powder Technology, 1994, 5(1): 1-14. |
9 | EngM , RasmusonA. Large eddy simulation of the influence of solids on macro instability frequency in a stirred tank[J]. Chemical Engineering Journal, 2015, 259: 900-910. |
10 | Lopezd B M, LaheyR T J, JonesO C. Turbulent bubbly two-phase flow data in a triangular duct[J]. Nuclear Engineering & Design, 1994, 146(1/2/3): 43-52. |
11 | FengX, LIX Y, ChengJ C, et al. Numerical simulation of solid-liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model[J]. Chem. Eng. Sci., 2012, 82: 272-284. |
12 | FerreiraP J, RasteiroM G, FigueiredoM M. A new approach to measuring solids concentration in mixing tanks[J]. Advanced Powder Technology, 1994, 5(1): 15-24. |
13 | TamburiniA, CipollinaA, MicaleG, et al. Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique[J]. Chemical Engineering Science, 2013, 87(Complete): 341-358. |
14 | BarresiA, BaldiG. Solid dispersion in an agitated vessel: effect of particle shape and density[J]. Chemical Engineering Science, 1987, 42(12): 2969-2972. |
15 | 黄雄斌, 闫宪斌, 施力田, 等. 固液搅拌槽内液相速度的分布[J]. 化工学报, 2002, 53(7): 717-722. |
HuangX B, YanX B, ShiL T, et al. Liquid velocity distributions in solid-liquid stirred vessels[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(7): 717-722. | |
16 | 单贤根, 禹耕之, 杨超, 等. 无挡板搅拌槽中液-固体系的分散特性[J]. 过程工程学报, 2008, 8(1): 1-7. |
ShanX G, YuG Z, YangC, et al. Dispersion characteristics of solid-liquid suspension in an unbaffled stirred tank[J]. The Chinese Journal of Process Engineering, 2008, 8(1): 1-7. | |
17 | BarresiA, BaldiG. Solid dispersion in an agitated vessel[J]. Chemical Engineering Science, 1987, 42(12): 2949-2956. |
18 | ZhangH , JohnstonP M , ZhuJ X , et al. A novel calibration procedure for a fiber optic solids concentration probe[J]. Powder Technology, 1998, 100(2/3): 260-272. |
19 | 廖艳飞, 王晓东, 那贤昭. 金属液纯净度的原位、在线、定量监测方法——LiMCA技术回顾与展望[J].中国测试, 2016, 42(2): 1-8. |
LiaoY F, WangX D, NaX Z. In situ, online and quantitative monitoring of liquid metal cleanliness method —review and prospect of LiMCA [J] . China Measurement & Testing Technology, 2016, 42(2): 1-8. | |
20 | MeiZ , ChoS H , ZhangA , et al. Counting leukocytes from whole blood using a lab-on-a-chip Coulter counter[C]// International Conference of the IEEE Engineering in Medicine & Biology Society. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012. |
21 | RhynerM N. The coulter principle for analysis of subvisible particles in protein formulations[J]. The AAPS Journal, 2011, (1): 54-58 |
22 | JohnL A, JohnA Q. The relationship between particle size and signal in coulter-type counters[J]. Review of Scientific Instruments , 1971, 42: 1257. |
23 | WangX D, MihaielaI, RoderickI L. Numerical studies on the in-situ measurement of inclusions in liquid steel using the E.S.Z. or LiMCA technique [J]. ISIJ International, 2009, 49 (7): 975-984. |
24 | DeBloisR W, BeanC P. Counting and sizing of submicron particles by the resistive pulse technique[J].Review of Scientific Instruments, 1970, 41(7): 909-916. |
25 | LiessM, SchulzR, NeumannM. A method for monitoring pesticides bound to suspended particles in small streams[J]. Chemosphere, 1996, 32(10): 1963-1969. |
26 | CleaverJ W, YatesB. A sub layer model for the deposition of particles from a turbulent flow[J]. Chemical Engineering Science, 1975, 30(8): 983-992. |
27 | LiA. Aerosol particle deposition in an obstructed turbulent duct flow[J]. J. Aerosol. Sci., 1994, 25(1): 91-112. |
28 | LiA, AhmadiG. Deposition of aerosols on surfaces in a turbulent channel flow[J]. Int. J. Eng. Sci., 1993, 31(3): 435-451. |
29 | DebloisR W, BeanC P, WesleyR K A. Electrokinetic measurements with submicron particles and pores by the resistive pulse technique[J]. Journal of Colloid and Interface Science, 1977, 61(2): 323-335. |
30 | NieD M, LinJ Z, ChenR Q. Grouping behavior of coaxial settling particles in a narrow channel[J]. Physical Review E, 2016, 93(1): 013114 |
31 | VerjusR, GuillouS, EzerskyA, et al. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: multiple states and routes to chaos[J]. Physics of Fluids, 2016, 28(12): 123303. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 242
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 395
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||