化工学报 ›› 2014, Vol. 65 ›› Issue (7): 2520-2534.DOI: 10.3969/j.issn.0438-1157.2014.07.014
周池楼, 赵永志
收稿日期:
2014-03-28
修回日期:
2014-04-14
出版日期:
2014-07-05
发布日期:
2014-07-05
通讯作者:
赵永志
ZHOU Chilou, ZHAO Yongzhi
Received:
2014-03-28
Revised:
2014-04-14
Online:
2014-07-05
Published:
2014-07-05
摘要: 经过三十余年的发展,离散单元法(discrete element method,DEM)已经发展成为一种广泛应用于过程工程领域中颗粒体系研究的数值方法,特别是将DEM与计算流体力学(computational fluid dynamics,CFD)相结合形成的CFD-DEM耦合方法,已经在流态化研究领域得到广泛应用。首先对DEM模型进行了综述,包括DEM模型的基本原理、颗粒形状模型、接触力模型、非接触力模型、流体作用力模型等;然后对CFD-DEM耦合方法及其在流态化领域的一些主要应用进行了介绍,包括在流化床、气力输送以及过程工程领域里的一些其他应用。最后对DEM模型以及CFD-DEM耦合方法的发展趋势进行了预测,希望能促进DEM方法的发展,并推动其在过程工程领域中的应用。
中图分类号:
周池楼, 赵永志. 离散单元法及其在流态化领域的应用[J]. 化工学报, 2014, 65(7): 2520-2534.
ZHOU Chilou, ZHAO Yongzhi. Discrete element method and its applications in fluidization[J]. CIESC Journal, 2014, 65(7): 2520-2534.
[1] | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29: 47-65 |
[2] | Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two dimensional fluidized bed [J]. Powder Technology, 1993, 77: 79-87 |
[3] | Gidaspow D. Multiphase Flow and Fluidization[M]. San Diego: Academic Press, 1994 |
[4] | Williams J R, Pentl A P. Superquadrics and model dynamics for discrete elements in interactive design [J]. Engineering Computations, 1992, 9: 115-127 |
[5] | Cleary P W. Industrial particle flow modeling using discrete element method [J]. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 2009, 26: 698-743 |
[6] | Cleary P W, Morrison R D. Particle methods for modelling in mineral processing [J]. International Journal of Computational Fluid Dynamics, 2009, 23: 137-146 |
[7] | Djordjevic N, Morrison R, Loveday B, Cleary P. Modelling comminution patterns within a pilot scale AG/SAG mill [J]. Minerals Engineering, 2006, 19: 1505-1516 |
[8] | Delaney G W, Cleary P W, Sinnott M D, Morrison R D. Novel application of DEM to modeling comminution processes//9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics[C].2010: 12099 |
[9] | Hilton J E, Mason L R, Cleary P W. Dynamics of gas-solid fluidised beds with non-spherical particle geometry [J]. Chemical Engineering Science, 2010, 65: 1584-1596 |
[10] | Cleary P W. Large scale industrial DEM modeling [J]. Engineering Computations, 2004, 21: 169-204 |
[11] | Chen Youchuan (陈友川). Study of contacting discrete element model based on superquadrics [D]. Hangzhou: Zhejiang University, 2012 |
[12] | Favier J F, Abbaspour-Fard M H, Kremmer M, Raji A O. Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multi-element model particles [J]. Engineering Computations, 1999, 16:467-480 |
[13] | Song Y, Turton R, Kayihan F. Contact detection algorithms for DEM simulations of tablet-shaped particles [J]. Powder Technology, 2006, 161: 32-40 |
[14] | Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V. A study on the validity of the multi-sphere discrete element method [J]. Powder Technology, 2008, 188: 153-165 |
[15] | Abbaspour-Fard M H. Theoretical validation of a multi-sphere, discrete element model suitable for biomaterials handling simulation [J]. Biosystems Engineering, 2004, 88: 153-161 |
[16] | Favier J F, Abbaspour-Fard M H, Kremmer M. Modeling nonsperical particles using multisphere discrete elements [J]. Journal of Engineering Mechanics, 2001, 127: 971-977 |
[17] | Lee H, Kwon J H, Kim K H, Cho H C. Application of DEM model to breakage and liberation behaviour of recycled aggregates from impact-breakage of concrete waste [J]. Minerals Engineering, 2008, 21: 761-765 |
[18] | Wang L, Park J Y, Fu Y. Representation of real particles for DEM simulation using X-ray tomography [J]. Construction and Building Materials, 2007, 21: 338-346 |
[19] | Schubert W, Khanal M, Tomas J. Impact crushing of particle- particle compounds—experiment and simulation [J]. International Journal of Mineral Processing, 2005, 75: 41-52 |
[20] | Jensen R P, Bosscher P J, Plesha M E, Edil T B. DEM simulation of granular media-structure interface: effects of surface roughness and particle shape [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23: 531-547 |
[21] | Abou-Chakra H, Baxter J, Tüzün U. Three-dimensional particle shape descriptors for computer simulation of non-spherical particulate assemblies [J]. Advanced Powder Technology, 2004, 15: 63-77 |
[22] | Markauskas D, Ka?ianauskas R, D?iugys A, Navakas R. Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations [J]. Granular Matter, 2010, 12: 107-123 |
[23] | Nezami E G, Hashash Y M A, Zhao D, Ghaboussi J. A fast contact detection algorithm for 3-D discrete element method [J]. Computers and Geotechnics, 2004, 31: 575-587 |
[24] | Zhu Tao (祝涛). Study of contact algorithm for 3-D discrete element method [D]. Wuhan: Huazhong University of Science & Technology, 2009 |
[25] | Zhao Yongzhi (赵永志), Cheng Yi (程易), Zheng Jinyang (郑津洋). Three-equation linear spring-dashpot DEM model and the determination of contact parameters [J]. Chinese Journal of Computational Mechanics (计算力学学报), 2009, 26 (2): 239-244 |
[26] | Langston P A, Tuzun U, Heyes D M. Continuous potential discrete particle simulations of stress and velocity-fields in hoppers-transition from fluid to granular flow [J]. Chemical Engineering Science, 1994, 49: 1259-1275 |
[27] | Hertz H. Über die Berührung fester elastischer Körper [J]. Journal fur die reine und angewandte Mathematik, 1882, 92: 156-171 |
[28] | Langston P A, Tuzun U, Heyes D M. Discrete element simulation of granular flow in 2D and 3D hoppers—dependence of discharge rate and wall stress on particle interactions [J]. Chemical Engineering Science, 1995, 50: 967-987 |
[29] | Langston P A, Tuzun U, Heyes D M. Discrete element simulation of internal-stress and flow-fields in funnel flow hoppers [J]. Powder Technology, 1995, 85: 153-169 |
[30] | Zhou Y C, Wright B D, Yang R Y, Xu B H, Yu A B. Rolling friction in the dynamic simulation of sandpile formation [J]. Physica A, 1999, 269: 536-553 |
[31] | Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM [J]. Journal of Engineering Mechanics, ASCE, 1998, 124: 285-292 |
[32] | Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method [J]. Powder Technology, 2000, 109: 192-205 |
[33] | Oda M, Iwashita K. Study on couple stress and shear band development in granular media based on numerical simulation analyses [J]. International Journal of Engineering Science, 2000, 38: 1713-1740 |
[34] | Chen J, Anandarajah A. van der Waals attraction between spherical particles [J]. Journal of Colloid and Interface Science, 1996, 180: 519-523 |
[35] | Dong K J, Zou R P, Yang R Y, Yu A B, Roach G. DEM simulation of cake formation in sedimentation and filtration [J]. Minerals Engineering, 2009, 22: 921-930 |
[36] | Zhang M H, Chu K W, Wei F, Yu A B. A CFD-DEM study of the cluster behavior in riser and downer reactors [J]. Powder Technology, 2008, 184: 151-165 |
[37] | Yang R Y, Zou R P, Yu A B. Computer simulation of the packing of fine particles [J]. Physical Review E, 2000, 62: 3900-3908 |
[38] | Moreno-Atanasio R, Antony S J, Williams R A. Influence of interparticle interactions on the kinetics of self-assembly and mechanical strength of nanoparticulate aggregates [J]. Particuology, 2009, 7: 106-113 |
[39] | Ye M, van der Hoef M A, Kuipers J A M. A numerical study of fluidization behavior of Geldart A particles using a discrete particle model [J]. Powder Technology, 2004, 139: 129-139 |
[40] | Lu N, Anderson M T, Likos W J, Mustoe G W. A discrete element model for kaolinite aggregate formation during sedimentation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32: 965-980 |
[41] | Yu A B, Xu B H. Particle-scale modeling of gas-solid flow in fluidization [J]. Journal of Chemical Technology and Biotechnology, 2003, 78: 111-121 |
[42] | Royer J R, Evans D J, Oyarte L, Guo Q, Kapit E, Mobius M E, Waitukaitis S R, Jaeger H M. High-speed tracking of rupture and clustering freely falling granular streams [J]. Nature, 2009, 459: 1110-1113 |
[43] | Hamaker H C. The London-van der Waals attraction between spherical particles [J]. Physica, 1937, 4: 1058-1072 |
[44] | Mehrotra V P, Sastry K V S. Pendular bond strength between unequal-sized spherical particles [J]. Powder Technology, 1980, 25: 203-214 |
[45] | Lian G, Thornton C, Adams M J. A theoretical study of the liquid bridge forces between two rigid spherical bodies [J]. Journal of Colloid and Interface Science, 1993, 161: 138-147 |
[46] | Melrose J C, Wallick G C. Exact geometrical parameters for pendular ring fluid [J]. Journal of Physical Chemistry, 1967, 71: 3676-3677 |
[47] | Heady R B, Cahn J W. An analysis of capillary forces in liquid-phase sintering of spherical particles [J]. Metallurgical Transaction, 1970, 1: 185-189 |
[48] | Orr F M, Scriven L E, Rivas A P. Pendular rings between solids-meniscus properties and capillary force [J]. Journal of Fluid Mechanics, 1975, 67: 723-742 |
[49] | Pietsch W, Rumpf H. Adhesion capillary pressure liquid volume and angle of contact of a liquid bridge between 2 spheres [J]. Chemie Engenieur Technik, 1967, 39: 885-893 |
[50] | Pierrat P, Caram H S. Tensile strength of wet granular materials [J]. Powder Technology, 1997, 91: 83-93 |
[51] | Urso M E D, Lawrence C J, Adams M J. Pendular, funicular, and capillary bridges: results for two dimensions [J]. Journal of Colloid and Interface Science, 1999, 220: 42-56 |
[52] | Melrose J C. Model calculations for capillary condensation [J]. AIChE Journal, 1966, 12: 986-994 |
[53] | Kruyer S. The penetration of mercury and capillary condensation in packed spheres [J]. Transactions of the Faraday Society, 1958, 54: 1758-1767 |
[54] | Cross N L, Picknett R C. Liquid layer between a sphere and a plane surface [J]. Transactions of the Faraday Society, 1963, 59: 846-855 |
[55] | Erle M A, Dyson D C, Morrow N R. Liquid bridges between cylinder, in a torus, and between spheres [J]. AIChE Journal, 1971, 17: 115-121 |
[56] | Chen Y, Zhao Y, Gao H, Zheng J. Liquid bridge force between two unequal-sized spheres or a sphere and a plane [J]. Particuology, 2011, 9: 374-380 |
[57] | Zhang R, Li J. Simulation on mechanical behavior of cohesive soil by distinct element method [J]. Journal of Terramechanics, 2006, 43: 303-316 |
[58] | Hsiau S S, Yang S C. Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect of liquid bridges [J]. Chemical Engineering Science, 2003, 58: 339-351 |
[59] | Yang S C, Hsiau S S. The simulation of powders with liquid bridges in a 2D vibrated bed [J]. Chemical Engineering Science, 2001, 56: 6837-6849 |
[60] | Nase S T, Vargas W L, Abatan A A, McCarthy J J. Discrete characterization tools for cohesive granular material [J]. Powder Technology, 2001, 116: 214-223 |
[61] | Lian G, Thornton C, Adams M J. Discrete particle simulation of agglomerate impact coalescence [J]. Chemical Engineering Science, 1998, 53: 3381-3391 |
[62] | Gao Hongli (高红利), Chen Youchuan (陈友川), Zhao Yongzhi (赵永志), Zheng Jinyang (郑津洋). Simulation of mixing process for size-type binary wet particulate systems in a rotating horizontal drum by discrete element method [J]. Acta Physica Sinica (物理学报) , 2011, 60 (12): 124501 |
[63] | Ergun S. Fluid flow through packed columns [J]. Chemical Engineering and Processing, 1952, 48: 89-94 |
[64] | Wen C Y, Yu Y H. Mechanics of fluidization [J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111 |
[65] | Di Felice R. The voidage function for fluid-particle interaction systems [J]. International Journal of Multiphase Flow, 1994, 20: 153-159 |
[66] | Hoomans B P B, Kuipers J A M, Briels W J, van Swaaij W P M. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard sphere approach [J]. Chemical Engineering Science, 1996, 51: 99-118 |
[67] | Xu B H, Yu A B. Numerical simulation of the gas-particle flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52: 2785-2809 |
[68] | Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization [J]. Chemical Engineering Science, 1999, 54: 5809-5821 |
[69] | Rong D, Mikami T, Horio M. Particle and bubble movements around tubes immersed in fluidized beds—a numerical study [J]. Chemical Engineering Science, 1999, 54: 5737-5754 |
[70] | Kawaguchi T, Sakamoto M, Tanaka T, Tsuji Y. Quasi-three-dimensional numerical simulations of spouted beds in cylinder [J]. Powder Technology, 2000, 109: 3-12 |
[71] | Takeuchi S, Wang S, Rhodes M. Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system [J]. Chemical Engineering Science, 2004, 59: 3495-3504 |
[72] | Limtrakul S, Boonsrirat A, Vatanatham T. DEM modeling and simulation of a catalytic gas-solid fluidized bed reactor: a spouted bed as a case study [J]. Chemical Engineering Science, 2004, 59: 5225-5231 |
[73] | Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe [J]. Powder Technology, 1992, 71: 239-250 |
[74] | Watano S, Saito S, Suzuki T. Numerical simulation of electrostatic charge in powder pneumatic conveying process [J]. Powder Technology, 2003, 135/136: 112-117 |
[75] | Li J, Webb C, Pandiella S S, Campbell G M, Dyakowski T, Cowell A, McGlinchey D. Solid deposition in low-velocity slug flow pneumatic conveying [J]. Chemical Engineering and Processing, 2005, 44: 167-173 |
[76] | Ouyang J, Yu A B. Simulation of gas-solid flow in vertical pipe by hard-sphere model [J]. Particulate Science and Technology, 2005, 23: 47-61 |
[77] | Ouyang J, Li J. Particle-motion-resolved discrete model for simulating gas-solid fluidization [J]. Chemical Engineering Science, 1999, 54: 2077-2083 |
[78] | Zhao Y, Cheng Y, Wu C, Ding Y, Jin Y. Eulerian-Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer [J]. Particuology, 2010, 8: 44-50 |
[79] | Zhao Yongzhi (赵永志), Cheng Yi (程易), Jin Yong (金涌). Kinetic simulation of two-dimensional spouted bed with draft plates by discrete element method [J]. Chemical Engineering (China) (化学工程), 2007, 35 (6):24-28 |
[80] | Zhao Yongzhi (赵永志), Cheng Yi (程易). Particle-scale simulation of fluidized bed with immersed tubes [J]. Chemical Engineering (China) (化学工程), 2007, 35 (11):21-24 |
[81] | Zhao Y, Jiang M, Liu Y, Zheng J. Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube [J]. AIChE Journal, 2009, 55: 3109-3124 |
[82] | Tanaka T, Kawaguchi T, Tsuji Y. Discrete particle simulation of flow patterns in 2-dimensional gas-fluidized beds [J]. International Journal of Modern Physics B, 1993, 7: 1889-1898 |
[83] | Kawaguchi T, Tanaka T, Tsuji Y. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models) [J]. Powder Technology, 1998, 96: 129-138 |
[84] | Lu W M, Ju S P, Tung K L, Lu Y C. Stability analysis of perforated plate type single stage suspension fluidized bed without downcomer [J]. Korean Journal of Chemical Engineering, 1999, 16: 810-817 |
[85] | Lu H L, Wang S, Zhao Y H, Yang L, Gidaspow D, Ding J M. Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model [J]. Chemical Engineering Science, 2005, 60: 3217-3231 |
[86] | Yuu S, Umekage T, Johno Y. Numerical simulation of air and particle motions in bubbling fluidized bed of small particles [J]. Powder Technology, 2000, 110: 158-168 |
[87] | Xu B H, Feng Y Q, Yu A B, Chew S J, Zulli P. A numerical and experimental study of gas-solid flow in a fluid-bed reactor [J]. Powder Handling and Processing, 2001, 13: 71-76 |
[88] | Limtrakul S, Chalermwattanatai A, Unggurawirote K, Tsuji Y, Kawaguchi T, Tanthapanichakoon W. Discrete particle simulation of solids motion in a gas-solid fluidized bed [J]. Chemical Engineering Science, 2003, 58: 915-921 |
[89] | Feng Y Q, Xu B H, Zhang S J, Yu A B, Zulli P. Discrete particle simulation of gas fluidization of particle mixtures [J]. AIChE Journal, 2004, 50: 1713-1728 |
[90] | Rong D, Horio M. Behavior of particles and bubbles around immersed tubes in a fluidized bed at high temperature and pressure: a DEM simulation [J]. International Journal of Multiphase Flow, 2001, 27: 89-105 |
[91] | Chu K W, Yu A B. Numerical simulation of complex particle-fluid flows [J]. Powder Technology, 2008, 179: 104-114 |
[92] | Alobaid F, Ströhle J, Epple B. Extended CFD/DEM model for the simulation of circulating fluidized bed [J]. Advanced Powder Technology, 2013, 24: 403-415 |
[93] | He Y, Deen N G, van Sint Annaland M, Kuipers J A M. Gas-solid turbulent flow in a circulating fluidized bed riser: experimental and numerical study of monodisperse particle systems [J]. Industrial & Engineering Chemistry Research, 2009, 48: 8091-8097 |
[94] | Zhu J X, Yu Z Q, Jin Y, Grace J R, Issangya A. Cocurrent downflow circulating fluidized bed (downer) reactors—a state of the art review [J]. Canadian Journal of Chemical Engineering, 1995, 73: 662-677 |
[95] | Limtrakul S, Thanomboon N, Vatanatham T, Khongprom P. DEM modeling and simulation of a down-flow circulating fluidized bed [J]. Chemical Engineering Communications, 2008, 195: 1328-1344 |
[96] | Zhao T, Liu K, Cui Y, Takei M. Three-dimensional simulation of the particle distribution in a downer using CFD-DEM and comparison with the results of ECT experiments [J]. Advanced Powder Technology, 2010, 21: 630-640 |
[97] | Zhao Y, Ding Y, Wu C, Cheng Y. Numerical simulation of hydrodynamics in downers using a CFD-DEM coupled approach [J]. Powder Technology, 2010, 199: 2-12 |
[98] | Nakamura H, Watano S. Numerical modeling of particle fluidization behavior in a rotating fluidized bed [J]. Powder Technology, 2007, 171: 106-117. |
[99] | Nakamura H, Tokuda T, Iwasaki T, Watano S. Numerical analysis of particle mixing in a rotating fluidized bed [J]. Chemical Engineering Science, 2007, 62: 3043-3056 |
[100] | Nakamura H, Kondo T, Watano S. Improvement of particle mixing and fluidization quality in rotating fluidized bed by inclined injection of fluidizing air [J]. Chemical Engineering Science, 2013, 91: 70-78 |
[101] | Jiang Maoqiang (江茂强), Zhao Yongzhi (赵永志), Zheng Jinyang (郑津洋). Simulation of the behavior of gas-solid flow in a novel rotating fluidized bed in a static geometry [J]. The Chinese Journal of Process Engineering (过程工程学报), 2009, 9 (S2): 175-179 |
[102] | Yang S, Luo K, Fang M, Zhang K, Fan J. Parallel CFD-DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate [J]. Chemical Engineering Journal, 2014, 236: 158-170 |
[103] | Hassani M A, Zarghami R, Norouzi H R, Mostoufi N. Numerical investigation of effect of electrostatic forces on the hydrodynamics of gas-solid fluidized beds [J]. Powder Technology, 2013, 246: 16-25 |
[104] | Di Renzo A, Di Maio F P. Homogeneous and bubbling fluidization regimes in DEM-CFD simulations: hydrodynamic stability of gas and liquid fluidized beds [J]. Chemical Engineering Science, 2007, 62: 116-130 |
[105] | Di Renzo A, Cello F, Di Maio F P. Simulation of the layer inversion phenomenon in binary liquid-fluidized beds by DEM-CFD with a drag law for polydisperse systems [J]. Chemical Engineering Science, 2011, 66: 2945-2958 |
[106] | Wang S, Guo S, Gao J, Lan X, Dong Q, Li X. Simulation of flow behavior of liquid and particles in a liquid-solid fluidized bed [J]. Powder Technology, 2012, 224: 365-373 |
[107] | Li T, Guenther C. MFIX-DEM simulations of change of volumetric flow in fluidized beds due to chemical reactions [J]. Powder Technology, 2012, 220: 70-78 |
[108] | Geng Y, Che D. An extended DEM-CFD model for char combustion in a bubbling fluidized bed combustor of inert sand [J]. Chemical Engineering Science, 2011, 66: 207-219 |
[109] | Liu D, Chen X, Zhou W, Zhao C. Simulation of char and propane combustion in a fluidized bed by extending DEM-CFD approach [J]. Proceedings of the Combustion Institute, 2011, 33: 2701-2708 |
[110] | Simsek E, Brosch B, Wirtz S, Scherer V, Krüll F. Numerical simulation of grate firing systems using a coupled CFD/discrete element method (DEM) [J]. Powder Technology, 2009, 193: 266-273 |
[111] | Zhou H, Mo G, Zhao J, Cen K. DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner [J]. Fuel, 2011, 90: 1584-1590 |
[112] | Wu C, Cheng Y, Ding Y, Jin Y. CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process [J]. Chemical Engineering Science, 2010, 65: 542-549 |
[113] | Wu C, Yan B, Jin Y, Cheng Y. Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes [J]. Particuology, 2010, 8: 525-530 |
[114] | Xiang J S, McGlinchey D. Numerical simulation of particle motion in dense phase pneumatic conveying [J]. Granular Matter, 2004, 6: 167-172 |
[115] | Li J, Webb C, Pandiella S S, Campbell G M, Dyakowski T, Cowell A, McGlinchey D. Solids deposition in low-velocity slug flow pneumatic conveying [J]. Chemical Engineering and Processing, 2005, 44: 167-173 |
[116] | Li J T, Mason D J. A computational investigation of transient heat transfer in pneumatic transport of granular particles [J]. Powder Technology, 2000, 112: 273-282 |
[117] | Lim E W C, Wang C H, Yu A B. Discrete element simulation for pneumatic conveying of granular material [J]. AIChE Journal, 2006, 52: 496-509 |
[118] | Lim E W C, Zhang Y, Wang C H. Effects of an electrostatic field in pneumatic conveying of granular materials through inclined and vertical pipes [J]. Chemical Engineering Science, 2006, 61: 7889-7908 |
[119] | Fraige F Y, Langston P A. Horizontal pneumatic conveying: a 3D distinct element model [J]. Granular Matter, 2006, 8: 67-80 |
[120] | Zhang Y, Lim E W C, Wang C H. Pneumatic transport of granular materials in an inclined conveying pipe: comparison of computational fluid dynamics-discrete element method (CFD-DEM), electrical capacitance tomography (ECT), and particle image velocimetry (PIV) results [J]. Industrial & Engineering Chemistry Research, 2007, 46: 6066-6083 |
[121] | Kuang S B, Chu K W, Yu A B, Zou Z S, Feng Y Q. Computational investigation of horizontal slug flow in pneumatic conveying [J]. Industrial & Engineering Chemistry Research, 2008, 47: 470-480 |
[122] | Kawaguchi T, Tanaka T, Tsuji Y. Numerical analysis of density wave in dense gas-solid flows in a vertical pipe [J]. Progress of Theoretical Physics Supplement, 2000, 138: 696-701 |
[123] | Xu M, Ge W, Li J H. A discrete particle model for particle-fluid flow with considerations of sub-grid structures [J]. Chemical Engineering Science, 2007, 62: 2302-2308 |
[124] | Chu K W, Wang Bo, Xu D L, Chen Y X, Yu A B. CFD-DEM simulation of the gas-solid flow in a cyclone separator [J]. Chemical Engineering Science, 2011, 66: 834-847 |
[125] | Feng Y Q, Pinson D, Yu A B, Chew S J, Zulli P. Numerical study of gas-solid flow in the raceway of a blast furnace [J]. Steel Research International, 2003, 74: 523-530 |
[126] | Nogami H, Yamaoka H, Takanani K. Raceway design for the innovative blast furnace [J]. ISIJ International, 2004, 44: 2150-2158 |
[127] | Umekage T, Yuu S, Kadowaki M. Numerical simulation of blast furnace raceway depth and height, and effect of wall cohesive matter on gas and coke particle flows [J]. ISIJ International, 2005, 45: 1416-1425 |
[128] | Yuu S, Umekage T, Miyahara T. Prediction of stable and unstable flows in blast furnace raceway using numerical simulation methods for gas and particles [J]. ISIJ International, 2005, 45: 1406-1415 |
[129] | Singh V, Gupta G S, Sarkar S. Study of gas cavity size hysteresis in a packed bed using DEM [J]. Chemical Engineering Science, 2007, 62: 6102-6111 |
[130] | Nakamura H, Iwasaki T, Watano S. Numerical simulation of film coating process in a novel rotating fluidized bed [J]. Chemical & Pharmaceutical Bulletin, 2006, 54: 839-846 |
[131] | Hilton J E, Ying D Y, Cleary P W. Modelling spray coating using a combined CFD-DEM and spherical harmonic formulation [J]. Chemical Engineering Science, 2013, 99: 141-160 |
[132] | Chou C S, Tseng C Y, Smid J, Kuo J T, Hsiau S S. Numerical simulation of flow patterns of disks in the asymmetric louvered-wall moving granular filter bed [J]. Powder Technology, 2000, 110: 239-245 |
[133] | Chou C S, Lee A F, Yeh C H. Gas-solid flow in a two-dimensional cross-flow moving granular filter bed with asymmetric boundary [J]. Particle & Particle Systems Characterization, 2007, 24: 210-222 |
[134] | Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios [J]. Chemical Engineering Journal, 2011, 166: 324-331 |
[135] | Natsui S, Ueda S, Nogami H, Kano J, Inoue R, Ariyama T. Gas-solid flow simulation of fines clogging a packed bed using DEM-CFD [J]. Chemical Engineering Science, 2012, 71: 274-282 |
[136] | Tabib M V, Johansen S T, Amini S. A 3D CFD-DEM methodology for simulating industrial scale packed bed chemical looping combustion reactors [J]. Industrial & Engineering Chemistry Research, 2013, 52: 12041-12058 |
[137] | Li J T, Mason D J. Application of the discrete element modeling in air drying of particulate solids [J]. Drying Technology, 2002, 20: 255-282 |
[138] | Shi D, Vargas W L, McCarthy J J. Heat transfer in rotary kilns with interstitial gases [J]. Chemical Engineering Science, 2008, 63: 4506-4516 |
[139] | Han T, Kalman H, Levy A. DEM simulation of particle comminution in jet milling [J]. Particulate Science and Technology, 2002, 20: 325-340 |
[140] | Goldschmidt M J V, Weijers G G C, Boerefijn R, Kuipers J A M. Discrete element modeling of fluidized bed spray granulation [J]. Powder Technology, 2003, 138: 39-45 |
[141] | Kafui K D, Thornton C. Fully-3D DEM simulation of fluidized bed spray granulation using an exploratory surface energy-based spray zone concept [J]. Powder Technology, 2008, 184: 177-188 |
[142] | Dong K J, Guo B Y, Chu K W, Yu A B, Brake I. Simulation of liquid-solid flow in a coal distributor [J]. Minerals Engineering, 2008, 21: 789-796. |
[143] | Guo Y, Wu C Y, Kafui K D, Thornton C. Numerical analysis of density-induced segregation during die filling [J]. Powder Technology, 2009, 197: 111-119 |
[144] | Jayasundara C T, Yang R Y, Guo B Y, Yu A B, Rubenstein J. Effect of slurry properties on particle motion in IsaMills [J]. Minerals Engineering, 2009, 22: 886-892 |
[145] | Wong W, Fletcher D F, Traini D, Chan H K, Young P M. The use of computational approaches in inhaler development [J]. Advanced Drug Delivery Reviews, 2012, 64: 312-322 |
[146] | Fernández X R, Nirschl H. Simulation of particles and sediment behavior in centrifugal field by coupling CFD and DEM [J]. Chemical Engineering Science, 2013, 94: 7-19 |
[147] | Tan Y, Zhang H, Yang D, Jiang S, Song J, Sheng Y. Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall [J]. Tribology International, 2012, 46: 137-144 |
[148] | Varga M, Goniva C, Adam K, Badisch E. Combined experimental and numerical approach for wear prediction in feed pipes [J]. Tribology International, 2013, 65: 200-206 |
[149] | Tsuji T, Yabumoto K, Tanaka T. Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM-CFD coupling simulation [J]. Powder Technology, 2008, 184: 132-140 |
[150] | Kafui D K, Johnson S, Thornton C, Seville J P K. Parallelization of a Lagrangian-Eulerian DEM/CFD code for application to fluidized beds [J]. Powder Technology, 2011, 207: 270-278 |
[151] | Jajcevic D, Siegmann E, Radeke C, Khinast J G. Large-scale CFD-DEM simulations of fluidized granular systems [J]. Chemical Engineering Science, 2013, 98: 298-310 |
[152] | Amritkar A, Deb S, Tafti D. Efficient parallel CFD-DEM simulations using OpenMP [J]. Journal of Computational Physics, 2014, 256: 501-519 |
[153] | Zhou Z Y, Pinson D, Zou R P, Yu A B. Discrete particle simulation of gas fluidization of ellipsoidal particles [J]. Chemical Engineering Science, 2011, 66: 6128-6145 |
[154] | Ren B, Zhong W, Chen Y, Chen X, Jin B, Yuan Z, Lu Y. CFD-DEM simulation of spouting of corn-shaped particles [J]. Particuology, 2012, 10: 562-572 |
[155] | Guo Y, Wu C Y, Thornton C. Modeling gas-particle two-phase flows with complex and moving boundaries using DEM-CFD with an immersed boundary method [J]. AIChE Journal, 2013, 59: 1075-1087 |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[8] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[9] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[10] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[11] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[12] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[13] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[14] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[15] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||