[1] |
Zhou Zhongren (周中仁), Wu Wenliang (吴文良). Status quo and prospects of biomass energy [J]. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 2006, 21 (12): 12-15.
|
[2] |
Sun Zhenjun (孙振钧). Biomass industry and its developmental trends in China [J]. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 2004, 20 (5): 1-5.
|
[3] |
Zhang Guangyi (张光义), Ma Dazhao (马大朝), Peng Cuina (彭翠娜), Xu Guangwen (许光文). Hydrothermal treatment of antibiotic mycelial dregs for solid bio-fuel preparation [J]. CIESC Journal (化工学报), 2013, 64 (10): 3741-3749.
|
[4] |
Wu Qianfang (吴倩芳), Zhang Fushen (张付申). Progress on hydrothermal carbonization of waste biomass [J]. Environmental Pollution & Control (环境污染与防治), 2012, 34 (7): 70-75.
|
[5] |
Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering [J]. Biofuels, Bioproducts and Biorefining, 2010, 4 (2): 160-177.
|
[6] |
Bergius F. Die Anwendung hoger durcke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle [M]. W. Knapp, 1913.
|
[7] |
Schuhmacher J P, Huntjens F J, Vankrevelen D W. Chemical structure and properties of coal (26): Studies on artificial coalification [J]. Fuel, 1960, 39 (3): 223-234.
|
[8] |
Wang Q, Li H, Chen L, Huang X. Monodispersed hard carbon spherules with uniform nanopores [J]. Carbon, 2001, 39 (14): 2211- 2214.
|
[9] |
Parshetti G K, Hoekman S K, Balasubramanian R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches [J]. Bioresource Technology, 2013, 135: 683-689.
|
[10] |
Hoekman S K, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass [J]. Energy & Fuels, 2011, 25 (4): 1802-1810.
|
[11] |
Libra J A, Ro K S, Kammann C, Funke A, Berge N D, Neubauer Y, Titirici M, Fühner C, Bens O, Kern J. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis [J]. Biofuels, 2011, 2 (1): 71-106.
|
[12] |
Rillig M C, Wagner M, Salem M, Antunes P M, George C, Ramke H, Titirici M, Antonietti M. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza [J]. Applied Soil Ecology, 2010, 45 (3): 238-242.
|
[13] |
Regmi P, Moscoso J L G, Kumar S, Cao X, Mao J, Schafran G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process [J]. Journal of Environmental Management, 2012, 109: 61-69.
|
[14] |
Inagaki M, Park K C, Endo M. Carbonization under pressure [J]. New Carbon Materials, 2010, 25 (6): 409-420.
|
[15] |
Yu L, Falco C, Weber J, White R J, Howe J Y, Titirici M. Carbohydrate-derived hydrothermal carbons: a thorough characteri- zation study [J]. Langmuir, 2012, 28 (33): 12373-12383.
|
[16] |
Gao Xiaoyue (高晓月), Wang Meirong (王美蓉), Wang Shuhua (王淑花), Jia Husheng (贾虎生). Technical research and mechanism on the preparation of carbon materials from cellulose [J]. New Chemical Materials (化工新型材料), 2012, 40 (8): 119-122.
|
[17] |
Tan Hong (谭洪), Wang Shurong (王树荣), Luo Zhongyang (骆仲泱), Cen Kefa (岑可法). Pyrolysis behavior of cellulose, xylan and lignin [J]. Journal of Fuel Chemistry and Technology (燃料化学学报), 2006, 34 (1): 61-65.
|
[18] |
Zhang L, Wang Q, Wang B, Yang G, Lucia L A, Chen J. Hydrothermal carbonization of corncob residues for hydrochar production [J]. Energy & Fuels, 2015, 29 (2): 872-876.
|
[19] |
Wu L M, Zhou C H, Tong D S, Yu W H, Wang H. Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar [J]. Cellulose, 2014, 21 (4): 2845-2857.
|
[20] |
Liu F, Guo M. Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass [J]. Journal of Materials Science, 2015, 50 (4): 1624-1631.
|
[21] |
Reza M T, Rottler E, Herklotz L, Wirth B. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide [J]. Bioresource Technology, 2015, 182: 336-344.
|
[22] |
Berge N D, Ro K S, Mao J, Flora J R, Chappell M A, Bae S. Hydrothermal carbonization of municipal waste streams [J]. Environmental Science & Technology, 2011, 45 (13): 5696-5703.
|
[23] |
Yan W, Acharjee T C, Coronella C J, Vásquez V R. Thermal pretreatment of lignocellulosic biomass [J]. Environmental Progress & Sustainable Energy, 2009, 28 (3): 435-440.
|
[24] |
Levine R B, Pinnarat T, Savage P E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification [J]. Energy & Fuels, 2010, 24 (9): 5235-5243.
|
[25] |
Ruyter H P. Coalification model [J]. Fuel, 1982, 61 (12): 1182-1187.
|
[26] |
Chen B, Johnson E J, Chefetz B, Zhu L, Xing B. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility [J]. Environmental Science & Technology, 2005, 39 (16): 6138-6146.
|
[27] |
Peterson A A, Vogel F, Lachance R P, Fröling M, Antal Jr M J, Tester J W. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies [J]. Energy & Environmental Science, 2008, 1 (1): 32-65.
|
[28] |
Araujo-Andrade C, Ruiz F, Martínez-Mendoza J R, Terrones H. Infrared and Raman spectra, conformational stability, ab initio calculations of structure, and vibrational assignment of α and β glucose [J]. Journal of Molecular Structure: THEOCHEM, 2005, 714 (2): 143-146.
|
[29] |
Kabyemela B M, Adschiri T, Malaluan R M, Arai K. Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics [J]. Industrial & Engineering Chemistry Research, 1999, 38 (8): 2888-2895.
|
[30] |
Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie: International Edition, 2004, 43 (5): 597-601.
|
[31] |
Holgate H R, Meyer J C, Tester J W. Glucose hydrolysis and oxidation in supercritical water [J]. AIChE Journal, 1995, 41 (3): 637-648.
|
[32] |
Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose [J]. Carbon, 2009, 47 (9): 2281-2289.
|
[33] |
Aida T M, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. Dehydration of D-glucose in high temperature water at pressures up to 80 MPa [J]. The Journal of Supercritical Fluids, 2007, 40 (3): 381-388.
|
[34] |
Ogihara Y, Smith Jr R L, Inomata H, Arai K. Direct observation of cellulose dissolution in subcritical and supercritical water over a wide range of water densities (550-1000 kg/m3) [J]. Cellulose, 2005, 12 (6): 595-606.
|