[1] |
LOGAN B E, BERT H, REN R, et al. Microbial fuel cells:methodology and technology[J]. Environmental Science & Technology, 2006, 40(17):5181-5192.
|
[2] |
BEHERA M, JANA P S, GHANGREKAR M M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode[J]. Bioresource Technology, 2010, 101(4):1183-1189.
|
[3] |
JEFFREY C, KOPP R J, PORTNEY P R. Energy resources and global development[J]. Science, 2003, 302(5650):1528-1531.
|
[4] |
EDIGER V S, KENTEL E. Renewable energy potential as an alternative to fossil fuels in Turkey[J]. Energy Conversion & Management, 1999, 40(7):743-755.
|
[5] |
LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5):375-781.
|
[6] |
LI C, ZHANG L, DING L, et al. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis[J]. Biosensors & Bioelectronics, 2011, 26(10):4169-4176.
|
[7] |
KUMAR G G, SARATHI V G S, NAHM K S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells[J]. Biosensors & Bioelectronics, 2013, 43:461-75.
|
[8] |
OLIVEIRA V B, SIMOES M, MELO L F, et al. Overview on the developments of microbial fuel cells[J]. Biochemical Engineering Journal, 2013, 73(8):53-64.
|
[9] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
|
[10] |
GOMEZ-NAVARRO, WEITZ R T, BITTNER A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets[J]. Nano Letters, 2007, 7(11):3499-3503.
|
[11] |
CHITARA B, KRUPANIDHI S B, RAO C N R. Solution processed reduced graphene oxide ultraviolet detector[J]. Applied Physics Letters, 2011, 99(11):113114-3.
|
[12] |
NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
|
[13] |
LIN L Y. A novel core-shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material[J]. Journal of Materials Chemistry A, 2013, 1(37):11237-11245.
|
[14] |
LOH K P, BAO Q, EDA G, et al. Graphene oxide as a chemically tunable platform for optical applications[J]. Nature Chemistry, 2010, 2(12):1015-1024.
|
[15] |
WANG H, HAO Q, YANG X, et al. Graphene oxide doped polyaniline for supercapacitors[J]. Electrochemistry Communications, 2009, 11(6):1158-1161.
|
[16] |
ZHANG Y, MO G, LI X, et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, 196(13):5402-5407.
|
[17] |
DA C, LONGHUA T, JINGHONG L. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8):3157-3180.
|
[18] |
JING L, YAN Q, GUO C X, et al. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114(3):275-280.
|
[19] |
YUAN Y, ZHOU S, ZHAO B, et al. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells[J]. Bioresource Technology, 2012, 116:453-458.
|
[20] |
TANG J, CHEN S, YONG Y, et al. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells[J]. Biosensors & Bioelectronics, 2015, 71:387-395.
|
[21] |
ZHANG K, ZHANG L, ZHAO X, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4):1392-1401.
|
[22] |
YONG Y C, DONG X C, CHAN-PARK M B, et al. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells[J]. ACS Nano, 2012, 6(3):2394-2400.
|
[23] |
WANG Y, ZHAO C E, SUN D, et al. A graphene/poly(3,4-ethylenedioxythiophene) hybrid as an anode for high-performance microbial fuel cells[J]. Chempluschem, 2013, 78(8):823-829.
|
[24] |
LV Z, CHEN Y, WEI H, et al. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application[J]. Electrochimica Acta, 2013, 111(6):366-373.
|
[25] |
UWE S, JULIANE N, FRITZ S. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude[J]. Angewandte Chemie, 2003, 42(25):2880-2883.
|
[26] |
PRASAD D, ARUN S A, PADMANABAN S, et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell[J]. Biosensors & Bioelectronics, 2007, 22(11):2604-2610.
|
[27] |
YUAN Y, KIM S H. Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes[J]. Bulletin-Korean Chemical Society, 2008, 29(29):1344-1348.
|
[28] |
FENG C, MA L, LI F, et al. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors & Bioelectronics, 2010, 25(6):1516-1520.
|
[29] |
KELLY T L, YANO K, WOLF M O. Supercapacitive properties of PEDOT and carbon colloidal microspheres[J]. ACS Applied Materials & Interfaces, 2009, 1(11):2536-2543.
|
[30] |
YONG H K, SACHSE C, MACHALA M L, et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells[J]. Advanced Functional Materials, 2011, 21(6):1076-1081.
|
[31] |
刘兴倩, 王许云, 郭庆杰. PEDOT/MWCNTs复合阳极的制备及在MFC中的应用[J]. 化工学报, 2013, 64(5):1773-1779. LIU X Q, WANG X Y, GUO Q J. Preparation and application of PEDOT/MWCNTs composite anode for MFC[J]. CIESC Journal, 2013, 64(5):1773-1779.
|
[32] |
STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
|
[33] |
FERRARI A C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1):47-57.
|