[1] |
SKALSKA K, MILLER J S, LEDAKOWICZ S. Trends in NOx abatement:a review[J]. Science of the Total Environment, 2010, 408(19):3976-3989.
|
[2] |
毛健全, 煤的清洁燃烧[M]. 北京:科学出版社, 1998. MAO J Q. Coal Clean Combustion[M]. Beijing:Science Press, 1998.
|
[3] |
TAYLOR K C. Nitric oxide catalysis in automotive exhaust systems[J]. Catalysis Reviews-Science and Engineering, 1993, 35(4):457-481.
|
[4] |
CHENG X, BI X T. Modeling NOx adsorption onto Fe/ZSM-5 catalysts in a fixed bed reactor[J]. International Journal of Chemical Reactor Engineering, 2013, 11(1):19-30.
|
[5] |
IWAMOTO M, YAHIRO H, TANDA K, et al. Removal of nitrogen monoxide through a novel catalytic process(Ⅰ):Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites[J]. The Journal of Physical Chemistry, 1991, 95(9):3727-3730.
|
[6] |
MRAD R, AISSAT A, COUSIN R, et al. Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR)[J]. Applied Catalysis A:General, 2015, 504:542-548.
|
[7] |
TABATA T, OHTSUKA H, SABATINO L M F, et al. Selective catalytic reduction of NOx by propane on Co-loaded zeolites[J]. Microporous and Mesoporous Materials, 1998, 21(4):517-524.
|
[8] |
魏伟, 史庆南, 魏坤霞.汽车尾气三元净化催化剂的研究新进展[J].贵金属, 2002, 23(2):61-65. WEI W, SHI Q N, WEI K X. New development of three-way catalysts for purifying automotive exhaust gas[J]. Precious Metals, 2002, 23(2):61-65.
|
[9] |
ZAANEN J, SAWATZKY G A, ALLEN J W. Band gaps and electronic structure of transition-metal compounds[J]. Physical Review Letters, 1985, 55(4):418-421.
|
[10] |
ZENER C. Interaction between the d-shells in the transition metals(Ⅱ):Ferromagnetic compounds of manganese with perovskite structure[J]. Physical Review, 1951, 82(3):403-405.
|
[11] |
CHENG X, ZHU A, ZHANG Y, et al. A combined DRIFTS and MS study on reaction mechanism of NO reduction by CO over NiO/CeO2 catalyst[J]. Applied Catalysis B:Environmental, 2009, 90(3):395-404.
|
[12] |
MILLER J T, GLUSKER E, PEDDI R, et al. The role of acid sites in cobalt zeolite catalysts for selective catalytic reduction of NOx[J]. Catalysis Letters, 1998, 51(1/2):15-22.
|
[13] |
KACIMI M, ZIYAD M, LIOTTA L F. Cu on amorphous AlPO4:preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen[J]. Catalysis Today, 2015, 241:151-158.
|
[14] |
MIZUNO N, TANAKA M, MISONO M. Reaction between carbon monoxide and nitrogen monoxide over perovskite-type mixed oxides[J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(1):91-95.
|
[15] |
SIMONOT L, MAIRE G. A comparative study of LaCoO3, Co3O4 and a mix of LaCoO3-Co3O4(Ⅱ):Catalytic properties for the CO+NO reaction[J]. Applied Catalysis B:Environmental, 1997, 11(2):181-191.
|
[16] |
LI Y, WEI Z, GAO F, et al. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol[J]. Journal of Catalysis, 2014, 315:15-24.
|
[17] |
BAIDYA T, BERA P, MUKRI B D, et al. DRIFTS studies on CO and NO adsorption and NO+CO reaction over Pd2+-substituted CeO2 and Ce0.75Sn0.25O2 catalysts[J]. Journal of Catalysis, 2013, 303:117-129.
|
[18] |
YAN L, YU R, CHEN J, et al. Template-free hydro-thermal synthesis of CeO2 nano-octahedrons and nanorods:investigation of the morphology evolution[J]. Crystal Growth and Design, 2008, 8(5):1474-1477.
|
[19] |
LIANG X, WANG X, ZHUANG Y, et al. Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect[J]. Journal of the American Chemical Society, 2008, 130(9):2736-2737.
|
[20] |
CARRETTIN S, CONCEPCIóN P, CORMA A, et al. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude[J]. Angewandte Chemie International Edition, 2004, 43(19):2538-2540.
|
[21] |
MADIER Y, DESCORME C, LE GOVIC A M, et al. Oxygen mobility in CeO2 and CexZr(1-x)O2 compounds:study by CO transient oxidation and 18O/16O isotopic exchange[J]. The Journal of Physical Chemistry B, 1999, 103(50):10999-11006.
|
[22] |
FORNASIERO P, RAO G R, KAŠPAR J. Reduction of NO by CO over Rh/CeO2-ZrO2 catalysts-evidence for a support-promoted catalytic activity[J]. Journal of Catalysis, 1998, 175(2):269-279.
|
[23] |
MA?ECKA M, K?PI A?G SKI L, M?CZKA M. Structure and phase composition of nanocrystalline Ce1-xLuxO2-y[J]. Journal of Solid State Chemistry, 2008, 181(9):2306-2312.
|
[24] |
WU B, ZINKEVICH M, ALDINGER F, et al. Ab initio study on structure and phase transition of A-and B-type rare-earth sesquioxides Ln2O3 (Ln=La-Lu, Y, and Sc) based on density function theory[J]. Journal of Solid State Chemistry, 2007, 180(11):3280-3287.
|
[25] |
CHEN Y, WANG J, YAN Z, et al. Promoting effect of Nd on the reduction of NO with NH3 over CeO2 supported by activated semi-coke:an in situ DRIFTS study[J]. Catalysis Science & Technology, 2015, 5(4):2251-2259.
|
[26] |
MAI H X, SUN L D, ZHANG Y W, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. The Journal of Physical Chemistry B, 2005, 109(51):24380-24385.
|
[27] |
ZHOU K, WANG X, SUN X, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. Journal of Catalysis, 2005, 229(1):206-212.
|
[28] |
冯良荣, 吕绍洁, 邱发礼. 过渡元素掺杂对纳米TiO2光催化剂性能的影响[J]. 化学学报, 2002, 60(3):463-467. FENG L R, LÜ S J, QIU F L. Influence of transition elements dopant on the photocatalytic activities of nanometer TiO2[J]. Acta Chimica Sinica, 2002, 60(3):463-467.
|
[29] |
侯梅芳, 李芳柏, 李瑞丰, 等. 钕掺杂提高TiO2光催化活性的机制[J]. 中国稀土学报, 2004, 22(1):75-80. HOU M F, LI F B, LI R F, et al. Enhancement of photo-catalytic properties and activity of Nd3+-doped TiO2 powders[J]. Journal of the Chinese Rare Earth Society, 2004, 22(1):75-80.
|
[30] |
PAN Z J. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping[J]. Acta Physica Sinica, 2005, 54(11):5308-5313.
|
[31] |
PAN Z J. First-principles study of electronic structure for CoSi[J]. Acta Physica Sinica, 2005, 54(1):328-332.
|
[32] |
KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied catalysis A:General, 2007, 327(2):261-269.
|
[33] |
WANG J, YAN Z, LIU L, et al. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Applied Surface Science, 2014, 313(13):660-669.
|
[34] |
ARICO A S, SHUKLA A K, KIM H, et al. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen[J]. Applied Surface Science, 2001, 172(1):33-40.
|
[35] |
BêCHE E, CHARVIN P, PERARNAU D, et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surface and Interface Analysis, 2008, 40(3/4):264-267.
|
[36] |
何余生, 李忠, 奚红霞,等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4):376-384. HE Y S, LI Z, XI H X, et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption, 2004, 20(4):376-384.
|
[37] |
近藤精一. 吸附科学[M]. 李希国, 译. 第2版. 北京:化学工业出版社, 2006:32-55. SEⅡCHI K. Adsorption Science[M]. LI X G, trans. 2nd ed. Beijing:Chemical Industry Press, 2006:32-55.
|
[38] |
MEHANDJIEV D, KHRISTOVA M, BEKYAROVA E. Conversion of NO on Co-impregnated active carbon catalysts[J]. Carbon, 1996, 34(6):757-762.
|
[39] |
KANG M, SONG M W, LEE C H. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts[J]. Applied Catalysis A:General, 2003, 251(1):143-156.
|