化工学报 ›› 2018, Vol. 69 ›› Issue (1): 239-248.DOI: 10.11949/j.issn.0438-1157.20170991
冷尔唯, 龚勋, 张扬, 徐明厚
收稿日期:
2017-07-26
修回日期:
2017-08-21
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
徐明厚
基金资助:
国家自然科学基金项目(51661125011,51306062)。
LENG Erwei, GONG Xun, ZHANG Yang, XU Minghou
Received:
2017-07-26
Revised:
2017-08-21
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170991
Supported by:
supported by the National Natural Science Foundation of China (51661125011,51306062).
摘要:
纤维素热解的机理研究对于生物质能的热利用至关重要,能够有效指导工业实际应用。基于著名的Broido-Shafizadeh模型,纤维素热解被分为两步,首先转变为活性的熔融态中间体(中间态纤维素),然后通过解聚和开环生成左旋葡聚糖、5-羟甲基糠醛、羟基乙醛等重要的化工原料。在这两步转变中,主要涉及低温段氢键网络的断裂、中间态纤维素的生成,以及高温段的解聚和吡喃环开环反应。本文从这3个部分对前人的研究进行了综述,着重介绍了中间态纤维素的生成和表征,综述了纤维素热解几个研究方向:结晶度和结晶形态对热解的影响、纤维素解聚反应方式、吡喃环开环方式等,详细阐述了二次反应对纤维素热解的影响,并提出了部分解决方案。关于纤维素热解依然存在诸多未知和争论,需要进一步的实验研究和理论计算对其进行揭示。
中图分类号:
冷尔唯, 龚勋, 张扬, 徐明厚. 纤维素热解机理研究进展:以中间态纤维素为核心的纤维素演变[J]. 化工学报, 2018, 69(1): 239-248.
LENG Erwei, GONG Xun, ZHANG Yang, XU Minghou. Progress of cellulose pyrolysis mechanism: cellulose evolution based on intermediate cellulose[J]. CIESC Journal, 2018, 69(1): 239-248.
[1] | ANCA-COUCE A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis[J]. Progress in Energy and Combustion Science, 2016, 53:41-79. |
[2] | LÉDÉ J. Cellulose pyrolysis kinetics:an historical review on the existence and role of intermediate active cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94:17-32. |
[3] | RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760):484-489. |
[4] | ATALLA R H, VANDERHART D L. Native cellulose:a composite of two distinct crystalline forms[J]. Science, 1984, 223(4633):283-285. |
[5] | BRADBURY A G W, SAKAI Y, SHAFIZADEH F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 1979, 23(11):3271-3280. |
[6] | XIN S, YANG H, CHEN Y, et al. Chemical structure evolution of char during the pyrolysis of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116:263-271. |
[7] | YU Y, LIU D, WU H. Characterization of water-soluble intermediates from slow pyrolysis of cellulose at low temperatures[J]. Energy & Fuels, 2012, 26(12):7331-7339. |
[8] | HALPERN Y, PATAI S. Pyrolytic reactions of carbohydrates(Ⅴ):Isothermal decomposition of cellulose in vacuo[J]. Israel Journal of Chemistry, 1969, 7(5):673-683. |
[9] | GONG X, YU Y, GAO X, et al. Formation of anhydro-sugars in the primary volatiles and solid residues from cellulose fast pyrolysis in a wire-mesh reactor[J]. Energy & Fuels, 2014, 28(8):5204-5211. |
[10] | PATWARDHAN P R, SATRIO J A, BROWN R C, et al. Product distribution from fast pyrolysis of glucose-based carbohydrates[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2):323-330. |
[11] | CHAIWAT W, HASEGAWA I, TANI T, et al. Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway[J]. Energy & Fuels, 2009, 23(3):5765-5772. |
[12] | LIU D, YU Y, LONG Y, et al. Effect of MgCl2 loading on the evolution of reaction intermediates during cellulose fast pyrolysis at 325℃[J]. Proceedings of the Combustion Institute, 2015, 35(2):2381-2388. |
[13] | KONDO T, TOGAWA E, BROWN R M. "Nematic ordered cellulose":a concept of glucan chain association[J]. Biomacromolecules, 2001, 2(4):1324-1330. |
[14] | AGARWAL V, HUBER G W, JR C W, et al. Simulating infrared spectra and hydrogen bondin in cellulose Ⅰβ at elevated temperatures.[J]. Journal of Chemical Physics, 2011, 135(13):134506-1. |
[15] | ZHANG M, GENG Z, YU Y. Density functional theory (DFT) study on the dehydration of cellulose[J]. Energy & Fuels, 2011, 25(6):2664-2670. |
[16] | SEGAL L, CREELY J J, MARTIN JR A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10):786-794. |
[17] | NEWMAN R H. Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths[J]. Solid State Nuclear Magnetic Resonance, 1999, 15(1):21-29. |
[18] | HULLEMAN S H, VAN HAZENDONK J M, VAN DAM J E. Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy[J]. Carbohydrate Research, 1994, 261(1):163-172. |
[19] | WANG Z, MCDONALD A G, WESTERHOF R J M, et al. Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100:56-66. |
[20] | LIU D, YU Y, WU H. Differences in water-soluble intermediates from slow pyrolysis of amorphous and crystalline cellulose[J]. Energy & Fuels, 2013, 27(3):1371-1380. |
[21] | WANG Z, PECHA B, WESTERHOF R J M, et al. Effect of cellulose crystallinity on solid/liquid phase reactions responsible for the formation of carbonaceous residues during pyrolysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(8):2940-2955. |
[22] | 王鹏, 龚勋, 张彪, 等. 基于离子液体再生的纤维素热解特性[J]. 化工学报, 2014, 65(12):4793-4798. WANG P, GONG X, ZHANG B, et al. Pyrolysis characteristics of cellulose from ionic liquid regeneration[J]. CIESC Journal, 2014, 65(12):4793-4798. |
[23] | DUCHEMIN B J. Structure, property and processing relationships of all-cellulose composites[D]. Christchurch:University of Canterbury, 2008. |
[24] | ISHIKAWA A, OKANO T, SUGIYAMA J. Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose Ⅰ, Ⅱ, ⅢⅠ and ⅣⅠ[J]. Polymer, 1997, 38(2):463-468. |
[25] | WADA M, HEUX L, ISOGAI A, et al. Improved structural data of cellulose Ⅳ prepared in supercritical ammonia[J]. Macromolecules, 2001, 34(5):1237-1243. |
[26] | ZUGENMAIER P. Conformation and packing of various crystalline cellulose fibers[J]. Progress in Polymer Science, 2001, 26(9):1341-1417. |
[27] | NISHIYAMA Y, SUGIYAMA J, CHANZY H, et al. Crystal structure and hydrogen bonding system in cellulose Ⅰα from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2003, 125(47):14300-14306. |
[28] | NISHIYAMA Y, LANGAN P, CHANZY H. Crystal structure and hydrogen-bonding system in cellulose Ⅰβ from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2002, 124(31):9074-9082. |
[29] | WATANABE A, MORITA S, OZAKI Y. Study on temperature-dependent changes in hydrogen bonds in cellulose Ⅰβ by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy[J]. Biomacromolecules, 2006, 7(11):3164-3170. |
[30] | WATANABE A, MORITA S, OZAKI Y. Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis[J]. Applied Spectroscopy, 2006, 60(6):611-618. |
[31] | WATANABE A, MORITA S, OZAKI Y. Temperature-dependent changes in hydrogen bonds in cellulose Ⅰα studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy:comparison with cellulose Ⅰβ[J]. Biomacromolecules, 2007, 8(9):2969-2975. |
[32] | ZHANG J, FENG L, WANG D, et al. Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment[J]. Bioresource Technology, 2014, 153:379-382. |
[33] | MUKARAKATE C, MITTAL A, CIESIELSKI P N, et al. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9):4662-4674. |
[34] | NORDIN S B, NYREN J O, BACK E L. An indication of molten cellulose produced in a laser beam[J]. Textile Research Journal, 1974, 44(2):152-154. |
[35] | BACK E L, HTUN M T, JACKSON M, et al. Ultrasonic measurements of thermal softening of paper products and influence of thermal auto-cross-linking reactions[J]. Tappi, 1967, 50(11 P 1):542. |
[36] | DIEBOLD J P. Ablative pyrolysis of macroparticles of biomass, 1980[C].1980. |
[37] | PEACOCKE G, MADRALI E S, LI C, et al. Effect of reactor configuration on the yields and structures of pine-wood derived pyrolysis liquids:a comparison between ablative and wire-mesh pyrolysis[J]. Biomass and Bioenergy, 1994, 7(1-6):155-167. |
[38] | LÉDÉ J, LI H Z, VILLERMAUX J, et al. Fusion-like behaviour of wood pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1987, 10(4):291-308. |
[39] | VLADARS-USAS A. Thermal decomposition of cellulose[D]. Waterloo:University of Waterloo, 1993. |
[40] | BOUTIN O, FERRER M, LÉDÉ J. Radiant flash pyrolysis of cellulose-evidence for the formation of short life time intermediate liquid species[J]. Journal of Analytical and Applied Pyrolysis, 1998, 47(1):13-31. |
[41] | LIU Q, WANG S, WANG K, et al. Mechanism of formation and consequent evolution of active cellulose during cellulose pyrolysis[J]. Acta Physico-Chimica Sinica, 2008, 24(11):1957-1963. |
[42] | DAUENHAUER P J, COLBY J L, BALONEK C M, et al. Reactive boiling of cellulose for integrated catalysis through an intermediate liquid[J]. Green Chemistry, 2009, 11(10):1555-1561. |
[43] | CONESA J A, CABALLERO J, MARCILLA A, et al. Analysis of different kinetic models in the dynamic pyrolysis of cellulose[J]. Thermochimica Acta, 1995, 254:175-192. |
[44] | DIEBOLD J P. A unified, global model for the pyrolysis of cellulose[J]. Biomass and Bioenergy, 1994, 7(1):75-85. |
[45] | LIN Y, CHO J, DAVIS J M, et al. Reaction-transport model for the pyrolysis of shrinking cellulose particles[J]. Chemical Engineering Science, 2012, 74:160-171. |
[46] | VARHEGYI G, ANTAL JR M J, SZEKELY T, et al. Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers (2):Sugarcane bagasse in the presence and absence of catalysts[J]. Energy & Fuels, 1988, 2(3):273-277. |
[47] | MILOSAVLJEVIC I, SUUBERG E M. Cellulose thermal decomposition kinetics:global mass loss kinetics[J]. Industrial & Engineering Chemistry Research, 1995, 34(4):1081-1091. |
[48] | VÖLKER S, RIECKMANN T. Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results[J]. Journal of Analytical and Applied Pyrolysis, 2002, 62(2):165-177. |
[49] | 王文钊. 纤维素热重分析及热解动力学研究[D]. 重庆:重庆大学, 2008. WANG W Z. Study on thermogravimetric analysis and pyrolysis kinetics of cellulose[D]. Chongqing:Chongqing University, 2008. |
[50] | ZHU G, ZHU X, XIAO Z, et al. Study of cellulose pyrolysis using an in situ visualization technique and thermogravimetric analyzer[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94:126-130. |
[51] | 黄娜, 高岱巍, 李建伟, 等. 生物质三组分热解反应及动力学的比较[J]. 北京化工大学学报(自然科学版), 2007, 34(5):462-466. HUANG N, GAO D W, LI J W, et al. Comparison of the pyrolysis and kinetics of three components of biomass[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2007, 34(5):462-466. |
[52] | LÉDÉ J, BLANCHARD F, BOUTIN O. Radiant flash pyrolysis of cellulose pellets:products and mechanisms involved in transient and steady state conditions[J]. Fuel, 2002, 81(10):1269-1279. |
[53] | PISKORZ J, RADLEIN D S A, SCOTT D S, et al. Pretreatment of wood and cellulose for production of sugars by fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1989, 16(2):127-142. |
[54] | LIU D, YU Y, WU H. Evolution of water-soluble and water-insoluble portions in the solid products from fast pyrolysis of amorphous cellulose[J]. Industrial & Engineering Chemistry Research, 2013, 52(36):12785-12793. |
[55] | LIU D, YU Y, HAYASHI J, et al. Contribution of dehydration and depolymerization reactions during the fast pyrolysis of various salt-loaded celluloses at low temperatures[J]. Fuel, 2014, 136:62-68. |
[56] | BANYASZ J L, LI S, LYONS-HART J, et al. Gas evolution and the mechanism of cellulose pyrolysis[J]. Fuel, 2001, 80(12):1757-1763. |
[57] | BAI X, JOHNSTON P, SADULA S, et al. Role of levoglucosan physiochemistry in cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99:58-65. |
[58] | HOSOYA T, KAWAMOTO H, SAKA S. Different pyrolytic pathways of levoglucosan in vapor-and liquid/solid-phases[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1):64-70. |
[59] | LENG E, WANG Y, GONG X, et al. Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis[J]. Proceedings of the Combustion Institute, 2017, 36(2):2263-2270. |
[60] | 王阳, 龚勋, 冷尔唯, 等. 基于苯甲酰化的纤维素热解过程中典型脱水糖的定量分析[J]. 化工学报, 2016, 67(6):2519-2524. WANG Y, GONG X, LENG E W, et al. Quantitative analysis of typical anhydro-sugars obtained during pyrolysis of cellulose based on benzoylation[J]. CIESC Journal, 2016, 67(6):2519-2524. |
[61] | IRVINE J C, OLDHAM J W H. CXCⅧ. The constitution of polysaccharides (Ⅲ):The relationship of L-glucosan to D-glucose and to cellulose[J]. Journal of the Chemical Society, Transactions, 1921, 119:1744-1759. |
[62] | PAKHOMOV A M. Free-radical mechanism of the thermodegradation of cellulose and formation of levoglucosan[J]. Russian Chemical Bulletin, 1957, 6(12):1525-1527. |
[63] | SHEN D K, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology, 2009, 100(24):6496-6504. |
[64] | PONDER G R, RICHARDS G N, STEVENSON T T. Influence of linkage position and orientation in pyrolysis of polysaccharides:a study of several glucans[J]. Journal of Analytical and Applied Pyrolysis, 1992, 22(92):217-229. |
[65] | MAYES H B, BROADBELT L J. Unraveling the reactions that unravel cellulose.[J]. Journal of Physical Chemistry A, 2012, 116(26):7098-7106. |
[66] | WANG S, GUO X, LIANG T, et al. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresource Technology, 2012, 104:722-728. |
[67] | FOSSEY J, LEFORT D, SORBA J. Free radicals in organic chemistry[J]. Journal of the American Chemical Society, 1996, 118:4226. |
[68] | SHAFIZADEH F, FURNEAUX R H, COCHRAN T G, et al. Production of levoglucosan and glucose from pyrolysis of cellulosic materials[J]. Journal of Applied Polymer Science, 1979, 23(12):3525-3539. |
[69] | MAMLEEV V, BOURBIGOT S, LE BRAS M, et al. Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition[J]. Chemical Engineering Science, 2006, 61(4):1276-1292. |
[70] | CHOI S, KIM M, KIM Y. Influence of silica on formation of levoglucosan from carbohydrates by pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(1):56-62. |
[71] | SCHEIRS J, CAMINO G, TUMIATTI W. Overview of water evolution during the thermal degradation of cellulose[J]. European Polymer Journal, 2001, 37(5):933-942. |
[72] | EVANS R J, MILNE T A. Molecular characterization of the pyrolysis of biomass[J]. Energy & Fuels, 1987, 1(2):123-137. |
[73] | ZHANG X, YANG W, DONG C. Levoglucosan formation mechanisms during cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104:19-27. |
[74] | METTLER M S, MUSHRIF S H, PAULSEN A D, et al. Revealing pyrolysis chemistry for biofuels production:conversion of cellulose to furans and small oxygenates[J]. Energy & Environmental Science, 2012, 5(1):5414-5424. |
[75] | AGARWAL V, DAUENHAUER P J, HUBER G W, et al. Ab Initio dynamics of cellulose pyrolysis:nascent decomposition pathways at 327 and 600℃[J]. Journal of the American Chemical Society, 2012, 134(36):14958-14972. |
[76] | PASTOROVA I, BOTTO R E, ARISZ P W, et al. Cellulose char structure:a combined analytical Py-GC-MS, FTIR, and NMR study[J]. Carbohydrate Research, 1994, 262(1):27-47. |
[77] | DEGROOT W F, PAN W, RAHMAN M D, et al. First chemical events in pyrolysis of wood[J]. Journal of Analytical and Applied Pyrolysis, 1988, 13(3):221-231. |
[78] | RICHARDS G N. Glycoaldehyde from pyrolysis of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 1987, 10(3):251-255. |
[79] | EVANS R J, WANG D, AGBLEVOR F A, et al. Mass spectrometric studies of the thermal decomposition of carbohydrates using 13C-labeled cellulose and glucose[J]. Carbohydrate Research, 1996, 281(2):219-235. |
[80] | KILZER F J, BROIDO A. Speculations on the nature of cellulose pyrolysis[J]. Pyrodynamics, 1965, 2:151-163 |
[81] | LU Q, TIAN H, HU B, et al. Pyrolysis mechanism of holocellulose-based monosaccharides:the formation of hydroxyacetaldehyde[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120:15-26. |
[82] | PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling (Part 2):The pyrolysis of D-glucose:general disconnective analysis and the formation of C1 and C2 carbonyl compounds by electrocyclic fragmentation mechanisms[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1):10-41. |
[83] | PAINE J B, PITHAWALLA Y B, NAWORAL J D, et al. Carbohydrate pyrolysis mechanisms from isotopic labeling (Part 1):The pyrolysis of glycerin:discovery of competing fragmentation mechanisms affording acetaldehyde and formaldehyde and the implications for carbohydrate pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(2):297-311. |
[84] | PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling (Part 3):The pyrolysis of D-glucose:formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrocyclic fragmentation mechanisms[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1):42-69. |
[85] | PAINE J B, PITHAWALLA Y B, NAWORAL J D. Carbohydrate pyrolysis mechanisms from isotopic labeling (Part 4):The pyrolysis of D-glucose:the formation of furans[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1):37-63. |
[86] | ARISZ P W, LOMAX J A, BOON J J. High-performance liquid chromatography/chemical ionization mass spectrometric analysis of pyrolysates of amylose and cellulose[J]. Analytical Chemistry, 1990, 62(14):1519-1522. |
[87] | ZHOU X, MAYES H B, BROADBELT L J, et al. Fast pyrolysis of glucose-based carbohydrates with added NaCl (part 1):Experiments and development of a mechanistic model[J]. AIChE Journal, 2016, 62(3):766-777. |
[88] | 冷尔唯, 张彪, 张坚, 等. 原糖和脱水糖模型化合物的快速热解特性研究[J]. 工程热物理学报, 2016, 37(10):2225-2229. LENG E W, ZHANG B, ZHANG J, et al. Characterizing the fast pyrolysis of oligosaccharides and anhydro-sugars as cellulose model compounds[J]. Journal of Engineering Thermophysics, 2016, 37(10):2225-2229. |
[89] | METTLER M S, PAULSEN A D, VLACHOS D G, et al. Pyrolytic conversion of cellulose to fuels:levoglucosan deoxygenation via elimination and cyclization within molten biomass.[J]. Energy & Environmental Science, 2012, 5(7):7864-7868. |
[90] | PATWARDHAN P R, DALLUGE D L, SHANKS B H, et al. Distinguishing primary and secondary reactions of cellulose pyrolysis[J]. Bioresource Technology, 2011, 102(8):5265-5269. |
[91] | WANG Y, ZHU Y, ZHOU Z, et al. Pyrolysis study on solid fuels:from conventional analytical methods to synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2016, 30(3):1534-1543. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[3] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[6] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[7] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[8] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[9] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[10] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[11] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[12] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[13] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[14] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[15] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||