化工学报 ›› 2018, Vol. 69 ›› Issue (1): 352-362.DOI: 10.11949/j.issn.0438-1157.20171058
刘护, 李春
收稿日期:
2017-08-08
修回日期:
2017-12-09
出版日期:
2018-01-05
发布日期:
2018-01-05
通讯作者:
李春
基金资助:
国家自然科学基金项目(21706012,21425624);中国博士后科学基金面上资助(2016M600936)。
LIU Hu, LI Chun
Received:
2017-08-08
Revised:
2017-12-09
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171058
Supported by:
supported by the National Natural Science Foundation of China (21706012, 21425624) and the China Postdoctoral Science Foundation Funded Project(2016M600936).
摘要:
酶的结构与催化稳定性是生物催化与转化过程中的研究热点之一。与单体酶相比,寡聚酶在进化过程中亚基之间的聚合使其在结构和功能上具有一定的优越性,然而寡聚酶独特的四级结构导致其在制备和应用中存在诸多问题,如制备效率低、催化位点利用率低、催化稳定性差等,其中亚基解离导致的催化稳定性问题在很大程度上限制了其工业化应用。目前,介质工程、多亚基固定化、亚基界面工程和融合蛋白策略被应用于寡聚酶的催化稳定性改造,而寡聚酶至单体酶的改造策略则试图从根本上解决寡聚酶的制备和应用问题,具有较好的应用前景。本文介绍了酶的寡聚结构演替所产生的新功能,总结了寡聚酶在制备和应用中存在的问题,重点阐述了提高寡聚酶制备效率和催化稳定性的策略。
中图分类号:
刘护, 李春. 酶的寡聚结构与催化稳定性[J]. 化工学报, 2018, 69(1): 352-362.
LIU Hu, LI Chun. Oligomeric structure of enzyme and its catalysis stability[J]. CIESC Journal, 2018, 69(1): 352-362.
[1] | BORNSCHEUER U T, HUISMAN G W, KAZLAUSKAS R J, et al. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397):185-194. |
[2] | LÜ B, YANG X, FENG X, et al. Enhanced production of glycyrrhetic acid 3-O-mono-β-D-glucuronide by fed-batch fermentation using pH and dissolved oxygen as feedback parameters[J]. Chinese Journal of Chemical Engineering, 2016, 24(4):506-512. |
[3] | HUANG S, FENG X, LI C. Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes[J]. Frontiers of Chemical Science and Engineering, 2015, 9(4):501-510. |
[4] | DOBSON R C J, VALEGÅRD K, GERRARD J A. The Crystal Structure of Three site-directed mutants of Escherichia coli dihydrodipicolinate synthase:further evidence for a catalytic triad[J]. Journal of Molecular Biology, 2004, 338(2):329-339. |
[5] | WALLACE B D, WANG H, LANE K T, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme[J]. Science, 2010, 330(6005):831-835. |
[6] | FRASER N J, LIU J W, MABBITT P D, et al. Evolution of protein quaternary structure in response to selective pressure for increased thermostability[J]. Journal of Molecular Biology, 2016, 428(11):2359-2371. |
[7] | BERTOŠA B, MIKLEUŠEVI? G, WIELGUS K B, et al. Homooligomerization is needed for stability:a molecular modelling and solution study of Escherichia coli purine nucleoside phosphorylase[J]. FEBS Journal, 2014, 281(7):1860-1871. |
[8] | SCHWAB T, SKEGRO D, MAYANS O, et al. A rationally designed monomeric variant of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus is as active as the dimeric wild-type enzyme but less thermostable[J]. Journal of Molecular Biology, 2008, 376(2):506-516. |
[9] | SMITH F D, ESSELTINE J L, NYGREN P J, et al. Local protein kinase A action proceeds through intact holoenzymes[J]. Science, 2017, 356(6344):1288-1298. |
[10] | KIM T H, MEHRABI P, REN Z, et al. The role of dimer asymmetry and protomer dynamics in enzyme catalysis[J]. Science, 2017, 355(6322):1-11. |
[11] | AUDIN M J C, WURM J P, CVETKOVIC M A, et al. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation[J]. Nucleic Acids Research, 2016, 44(6):2962-2973. |
[12] | SONG E S, RODGERS D, WHERSH L B. A monomeric variant of insulin degrading enzyme (IDE) loses its regulatory properties[J]. PloS One, 2010, 41(5):9719-9729. |
[13] | CHOI P H, JEANYOUNG J, LIN Y C, et al. A distinct holoenzyme organization for two-subunit pyruvate carboxylase[J]. Nature Communications, 2016, 7:12713-12720. |
[14] | KIM S, GRANT R A, SAUER R T. Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages[J]. Cell, 2011, 145(1):67-78. |
[15] | WANG F, WANG K, XU W, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice[J]. Cell Reports, 2017, 19(11):2331-2344. |
[16] | KIBURU I N, LARONDE L N. Interaction of Rio1 kinase with toyocamycin reveals a conformational switch that controls oligomeric state and catalytic activity[J]. PloS One, 2012, 10(11):37371-37382. |
[17] | CHOI J M, HAN S S, KIM H S. Industrial applications of enzyme biocatalysis:current status and future aspects[J]. Biotechnology Advances, 2015, 33(7):1443-1454. |
[18] | SMOCK R G, YADID I, DYM O, et al. De novo evolutionary emergence of a symmetrical protein is shaped by folding constraints[J]. Cell, 2016, 164(3):476-486. |
[19] | ALI M H, IMPERIALI B. Protein oligomerization:how and why[J]. Bioorganic & Medicinal Chemistry, 2005, 13(17):5013-5020. |
[20] | SØRENSEN H P, MORTENSEN K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 2005, 4(1):1-8. |
[21] | MATSUURA T, HOSODA K, ICHIHASHI N, et al. Kinetic analysis of beta-galactosidase and beta-glucuronidase tetramerization coupled with protein translation[J]. Journal of Biological Chemistry, 2011, 286(25):22028-22034. |
[22] | MATSUURA T, HOSODA K, KAZUTA Y, et al. Effects of compartment size on the kinetics of intracompartmental multimeric protein synthesis[J]. ACS Synthetic Biology, 2012, 1(9):431-437. |
[23] | YOVAL S B, PARDO J P, RODRÍGUEZ Z J S. New insights into the half-of-the-sites reactivity of human aldehyde dehydrogenase 1A1[J]. Proteins:Structure, Function, and Bioinformatics, 2013, 81(8):1330-1339. |
[24] | JOSEPH E, LE C Q, NGUYEN T, et al. Evidence of negative cooperativity and half-site reactivity within a F420-dependent enzyme:kinetic analysis of F420H2:NADP+ oxidoreductase[J]. Biochemistry, 2016, 55(7):1082-1090. |
[25] | NIJVIPAKUL S, BALLOU D P, CHAIYEN P. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1):half-sites reactivity[J]. Biochemistry, 2010, 49(43):9241-9248. |
[26] | FRENCH R L, GUPTA N, COPELAND P R, et al. Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis[J]. Journal of Biological Chemistry, 2014, 289(42):28783-28794. |
[27] | YUAN C, RIEKE C J, RIMON G, et al. Partnering between monomers of cyclooxygenase-2 homodimers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16):6142-6147. |
[28] | FERNANDEZ L R. Stabilization of multimeric enzymes:strategies to prevent subunit dissociation[J]. Enzyme & Microbial Technology, 2009, 45(6):405-418. |
[29] | 李家冬, 王弘. 重组蛋白正确折叠与修饰的提高策略[J]. 生物工程学报, 2017, 33(4):591-600. LI J D, WANG H. Strategies to improve the folding and modification of recombinant proteins:a review[J]. Chinese Journal of Biotechnology, 2017, 33(4):591-600. |
[30] | PRACHAYASITTIKUL V, LJUNG S, ISARANKURA N C, et al. NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase[J]. International Journal of Biological Sciences, 2006, 2(1):10-16. |
[31] | SCHACHNER L F, HAN G, DILLON M A, et al. Characterization of chain pairing variants of bispecific IgG expressed in a single host cell by high resolution native and denaturing mass spectrometry[J]. Analytical Chemistry, 2016, 88(24):12122-12130. |
[32] | SCHOFIELD D M, SIRKA E, KESHAVARZMOORE E, et al. Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA[J]. Biotechnology Letters, 2017, 39(12):1865-1873. |
[33] | TAKA J, OGASAHARA K, JEYAKANTHAN J, et al. Stabilization due to dimer formation of phosphoribosyl anthranilate isomerase from Thermus thermophilus HB8:X-ray analysis and DSC experiments[J]. Journal of Biochemistry, 2005, 137(5):569-578. |
[34] | BOLIVAR J M, CAVA F, MATEO C, et al. Immobilization-stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus[J]. Applied Microbiology & Biotechnology, 2008, 80(1):49-58. |
[35] | CHANG H C, CHOU W Y, CHANG G G. Effect of metal binding on the structural stability of pigeon liver malic enzyme[J]. Journal of Biological Chemistry, 2002, 277(7):4663-4671. |
[36] | HELLER M C, CARPENTER J, FRANDOLPH T W. Effects of phase separating systems on lyophilized hemoglobin[J]. Journal of Pharmaceutical Sciences, 1996, 85(12):1358-1362. |
[37] | ANCHORDOQUY T J, IZUTSU K I, RANDOLPH T W, et al. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying[J]. Archives of Biochemistry & Biophysics, 2001, 390(1):35-41. |
[38] | QUIOCHO F, ARICHARDS F M. Intermolecular cross linking of a protein in the crystalline state:carboxypeptidase-A[J]. Proceedings of the National Academy of Sciences of the United States of America, 1964, 52(3):833-841. |
[39] | SHELDON R A. Cross-linked enzyme aggregates (CLEAs):stable and recyclable biocatalysts[J]. Biochemical Society Transactions, 2007, 35(6):1583-1587. |
[40] | BOLIVAR J M, TRIBULATO M A, PETRASEK Z, et al. Let the substrate flow, not the enzyme:practical immobilization of D-amino acid oxidase in a glass microreactor for effective biocatalytic conversions[J]. Biotechnology & Bioengineering, 2016, 113(11):2342-2349. |
[41] | YOSHIMOTO M, SAKAMOTO H, YOSHIMOTO N. Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes[J]. Enzyme & Microbial Technology, 2007, 41(7):849-858. |
[42] | YOSHIMOTO M, SAKAMOTO H, SHIRAKAMI H. Covalent conjugation of tetrameric bovine liver catalase to liposome membranes for stabilization of the enzyme tertiary and quaternary structures[J]. Colloids & Surfaces B Biointerfaces, 2009, 69(2):281-290. |
[43] | AISSAOUI N, LANDOULSI J, BERGAOUI L, et al. Catalytic activity and thermostability of enzymes immobilized on silanized surface:influence of the crosslinking agent[J]. Enzyme & Microbial Technology, 2013, 52(6/7):336-346. |
[44] | ZHANG Y, REN H, WANG Y, et al. Bioinspired immobilization of glycerol dehydrogenase by metal ion-chelated polyethyleneimines as artificial polypeptides[J]. Scientific Reports, 2016, 6:24163-24170. |
[45] | ZHAO L, LIU Q, YAN S, et al. Multimeric immobilization of alcohol oxidase on electrospun fibers for valid tests of alcoholic saliva[J]. Journal of Biotechnology, 2013, 168(1):46-54. |
[46] | SONG W J, TEZCAN F A. A designed supramolecular protein assembly with in vivo enzymatic activity[J]. Science, 2014, 346(6216):1525-1528. |
[47] | PERICA T, CHOTHIA C, TEICHMANN S A. Evolution of oligomeric state through geometric coupling of protein interfaces[J]. Proceedings of the National Academy of Sciences, 2012, 109(21):8127-8132. |
[48] | NORN C, HANDRÉ I. Computational design of protein self-assembly[J]. Current Opinion in Structural Biology, 2016, 39:39-49. |
[49] | RICODÍAZ A, ÁLVAREZCAO M, ESCUDERRODRÍGUEZ J J, et al. Rational mutagenesis by engineering disulphide bonds improves Kluyveromyces lactisbeta-galactosidase for high-temperature industrial applications[J]. Scientific Reports, 2017, 7:65-72. |
[50] | LIU S. A review on protein oligomerization process[J]. International Journal of Precision Engineering & Manufacturing, 2015, 16(13):2731-2760. |
[51] | ROUVINSKI A, DEJNIRATTISAI W, GUARDADO C P, et al. Covalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope[J]. Nature Communications, 2017, 8:15411-15420. |
[52] | DAS M, KOBAYASHI M, YAMADA Y, et al. Design of disulfide-linked thioredoxin dimers and multimers through analysis of crystal contacts[J]. Journal of molecular biology, 2007, 372(5):1278-1292. |
[53] | TAN Z, LI J, WU M, et al. Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium by in silico design of a disulfide bridge[J]. Applied Biochemistry and Biotechnology, 2014, 173(7):1752-1764. |
[54] | BOGIN O, LEVIN I, HACHAM Y, et al. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii:contribution of salt bridging[J]. Protein Science A Publication of the Protein Society, 2002, 11(11):2561-2572. |
[55] | WILLIAMS J C, ZEELEN J P, NEUBAUER G, et al. Structural and mutagenesis studies of leishmania triosephosphate isomerase:a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power[J]. Protein Engineering, 1999, 12(3):243-256. |
[56] | BOYKEN S E, CHEN Z, GROVES B, et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity[J]. Science, 2016, 352(6286):680-691. |
[57] | ARABNEJAD H, LAGO M D, JEKEL P A, et al. A robust cosolvent-compatible halohydrin dehalogenase by computational library design[J]. Protein Engineering Design & Selection Peds, 2017, 30(3):173-181. |
[58] | PEIMBERT M, DOMÍNGUEZ-RAMÍREZ L, FERNÁNDEZ-VELASCO D A. Hydrophobic repacking of the dimer interface of triosephosphate isomerase by in silico design and directed evolution[J]. Biochemistry, 2008, 47(20):5556-5564. |
[59] | TIAN J, WANG P, HUANG L, et al. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method[J]. Applied Microbiology & Biotechnology, 2013, 97(7):2997-3006. |
[60] | DU K, ZHAO J, SUN J, et al. Specific ligation of two multimeric enzymes with native peptides and immobilization with controlled molar ratio[J]. Bioconjugate Chemistry, 2017, 28(4):1166-1176. |
[61] | YEOM S J, HAN G H, KIM M, et al. Controlled aggregation and increased stability of β-glucuronidase by cellulose binding domain fusion[J]. PloS One, 2017, 12(1):e0170398-e0170409. |
[62] | SHARMA P, KAILA P, GUPTASARMA P. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly-related glycosyl hydrolases[J]. FEBS Journal, 2016, 283(23):4340-4349. |
[63] | TONG Y, HUGHES D, PLACANICA L, et al. When monomers are preferred:a strategy for the identification and disruption of weakly oligomerized proteins[J]. Structure, 2005, 13(1):7-15. |
[64] | BOSSHART A, PANKE S, BECHTOLD M. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme[J]. Angewandte Chemie, 2013, 52(37):9673-9676. |
[65] | SEETOH W G, ABELL C. Disrupting the constitutive, homodimeric protein-protein interface in CK2β using a biophysical fragment-based approach[J]. Journal of the American Chemical Society, 2016, 138(43):14303-14311. |
[66] | 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11):1649-1657. FENG X D, LI C. The improvement of enzyme properties and its catalytic engineering strategy[J]. Progress in Chemistry, 2015, 27(11):1649-1657. |
[67] | JOSEPH P R B, POLURI K M, GANGAVARAPU P, et al. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins[J]. Biophysical Journal, 2013, 105(6):1491-1501. |
[68] | 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1):277-284. FENG X D, LÜ B, LI C. Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1):277-284. |
[69] | SCHWAB T, STERNER R. Stabilization of a metabolic enzyme by library selection in Thermus thermophilus[J]. Chembiochem:a European Journal of Chemical Biology, 2011, 12(10):1581-1588. |
[70] | STEPANENKO O V, ROGINSKⅡ D O, STEPANENKO O V, et al. Structure and stability of recombinant bovine odorant-binding protein(Ⅲ):Peculiarities of the wild type bOBP unfolding in crowded milieu[J]. PeerJ, 2016, 14(1):1642-1653.alysis of crystal contacts[J]. Journal of molecular biology, 2007, 372(5):1278-1292. |
[55] | TAN Z, LI J, WU M, et al. Enhancing the thermostability of a cold-active lipase from Penicillium cyclopium by in silico design of a disulfide bridge[J]. Applied Biochemistry and Biotechnology, 2014, 173(7):1752-1764. |
[56] | BOGIN O, LEVIN I, HACHAM Y, et al. Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii:contribution of salt bridging[J]. Protein Science A Publication of the Protein Society, 2002, 11(11):2561-2572. |
[57] | WILLIAMS J C, ZEELEN J P, NEUBAUER G, et al. Structural and mutagenesis studies of leishmania triosephosphate isomerase:a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power[J]. Protein Engineering, 1999, 12(3):243-256. |
[58] | BOYKEN S E, CHEN Z, GROVES B, et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity[J]. Science, 2016, 352(6286):680-691. |
[59] | ARABNEJAD H, LAGO M D, JEKEL P A, et al. A robust cosolvent-compatible halohydrin dehalogenase by computational library design[J]. Protein Engineering Design & Selection Peds, 2017, 30(3):173-181. |
[60] | PEIMBERT M, DOMÍNGUEZRAMíREZ L, FERNÁNDEZVELASCO D A. Hydrophobic repacking of the dimer interface of triosephosphate isomerase by in silico design and directed evolution[J]. Biochemistry, 2008, 47(20):5556-5565. |
[61] | TIAN J, WANG P, HUANG L, et al. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method[J]. Applied Microbiology & Biotechnology, 2013, 97(7):2997-3006. |
[62] | DU K, ZHAO J, SUN J, et al. Specific ligation of two multimeric enzymes with native peptides and immobilization with controlled molar ratio[J]. Bioconjugate Chemistry, 2017, 28(4):1166-1176. |
[63] | YEOM S J, HAN G H, KIM M, et al. Controlled aggregation and increased stability of β-glucuronidase by cellulose binding domain fusion[J]. PloS One, 2017, 12(1):e0170398-e0170409. |
[64] | SHARMA P, KAILA P, GUPTASARMA P. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly-related glycosyl hydrolases[J]. FEBS Journal, 2016, 283(23):4340-4349. |
[65] | PRACHAYASITTIKUL V L, JUNG S, BÜLOW L. NAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase[J]. International Journal of Biological Sciences, 2006, 2(1):10-16. |
[66] | TONG Y, HUGHES D, PLACANICA L, et al. When monomers are preferred:a strategy for the identification and disruption of weakly oligomerized proteins[J]. Structure, 2005, 13(1):7-15. |
[67] | BOSSHART A, PANKE S, BECHTOLD M. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme[J]. Angewandte Chemie, 2013, 52(37):9673-9676. |
[68] | SEETOH W, GABELL C. Disrupting the constitutive, homodimeric protein-protein interface in CK2β using a biophysical fragment-based approach[J]. Journal of the American Chemical Society, 2016, 138(43):14303-14311. |
[69] | JOSEPH P R B, POLURI K M, GANGAVARAPU P, et al. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins[J]. Biophysical Journal, 2013, 105(6):1491-1501. |
[70] | 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1):277-284. FENG X D, LV B, LI C. Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1):277-284. |
[71] | SCHWAB T, STERNER R. Stabilization of a metabolic enzyme by library selection in Thermus thermophilus[J]. Chembiochem:a European Journal of Chemical Biology, 2011, 12(10):1581-1588. |
[72] | STEPANENKO O V, ROGINSKⅡ D O, STEPANENKO O V, et al. Structure and stability of recombinant bovine odorant-binding protein (Ⅲ):Peculiarities of the wild type bOBP unfolding in crowded milieu[J]. PeerJ, 2016, 14(1):1642-1653. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[5] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[6] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[7] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[8] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[9] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[10] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[11] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[12] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[13] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[14] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[15] | 陈向上, 马振杰, 任希华, 贾悦, 吕晓龙, 陈华艳. 三维网络萃取膜的制备及传质效率研究[J]. 化工学报, 2023, 74(3): 1126-1133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||