化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4518-4529.DOI: 10.11949/j.issn.0438-1157.20180602
杨颖1, 曲冬蕾1, 李平1,2, 于建国1,2
收稿日期:
2018-06-01
修回日期:
2018-07-26
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
于建国
基金资助:
国家自然科学基金项目(51804127,U1610102,21776089);国家国际合作项目(2016YFE0132500,2015DFG42220);国家科技支撑计划项目(2015BAC04B01);中央高校基本科研业务费专项资金。
YANG Ying1, QU Donglei1, LI Ping1,2, YU Jianguo1,2
Received:
2018-06-01
Revised:
2018-07-26
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the National Natural Science Foundation of China(51804127, U1610102, 21776089), the International S&T Cooperation Program of China(2016YFE0132500, 2015DFG42220), the National Key Technology R&D Program of the Ministry of Science and Technology (2015BAC04B01) and the Fundamental Research Funds for the Central Universities.
摘要:
我国是一个多煤少气贫油的国家,煤层气储量约30万亿立方米,由于缺乏先进实用的低浓度煤层气甲烷分离浓缩技术,当前抽采煤层气利用率仅为50%左右。因此,对低浓度煤层气甲烷富集浓缩过程开展研究,可在开发能源的同时减少温室气体的排放,具有重大的应用价值和战略意义。简要介绍了我国煤层气资源开发利用情况,综述了近年来低浓度煤层气吸附浓缩技术研究进展,包括新型吸附材料及先进吸附工艺。对于低浓度煤层气中CH4/N2分离,目前文献报道吸附材料的吸附容量及分离系数仍然处于较低水平;受吸附材料的分离性能较差影响,传统变压吸附工艺对低浓度煤层气中CH4浓缩效果并不理想。最后指出,高吸附容量、高选择性吸附材料及多种方法结合的新型吸附工艺是未来低浓度煤层气吸附浓缩技术的发展方向。
中图分类号:
杨颖, 曲冬蕾, 李平, 于建国. 低浓度煤层气吸附浓缩技术研究与发展[J]. 化工学报, 2018, 69(11): 4518-4529.
YANG Ying, QU Donglei, LI Ping, YU Jianguo. Research and development on enrichment of low concentration coal mine methane by adsorption technology[J]. CIESC Journal, 2018, 69(11): 4518-4529.
[1] | 中华人民共和国国土资源部. 中国矿产资源报告[M]. 北京:地质出版社, 2017. Ministry of Land and Resources, the People's Republic of China. China Mineral Resources[M]. Beijing:Geological Publishing House, 2017. |
[2] | 王刚. 应用PSA浓缩煤层气技术的探讨[J]. 当代化工, 2008, 37(5):526-528. WANG G. Exploration of PSA technology for condensing coal-bed methane[J]. Contemp. Chem. Ind., 2008, 37(5):526-528. |
[3] | 聂李红, 徐绍平, 苏艳敏, 等. 低浓度煤层气提纯的研究现状[J]. 化工进展, 2008, 27(10):1505-1511+1521. NIE L H, XU S P, SU Y M, et al. Progress of recovery of low concentration coal bed methane[J]. Chem. Ind. Eng. Prog., 2008, 27(10):1505-1511+1521. |
[4] | KARAKURT I, AYDIN G, AYDINER K. Mine ventilation air methane as a sustainable energy source[J]. Renewable Sustainable Energy Rev., 2011, 15(2):1042-1049. |
[5] | 肖娅, 诸林. 含氧煤层气脱氧提浓技术研究[J]. 化学工业, 2013, 31(4):31-34. XIAO Y, ZHU L. The research of deoxy technology in oxygenated coal bed methane[J]. Chem. Ind., 2013, 31(4):31-34. |
[6] | 张慧, 潘红艳, 赵敏, 等. 低浓度煤层气脱氧技术的研究进展[J]. 化工技术与开发, 2014, 4:44-48+14. ZHANG H, PAN H Y, ZHAO M, et al. Progress of deoxidization for low concentration coal bed methane[J]. Technol. & Dvpt. Chem. Ind., 2014, 4:44-48+14. |
[7] | RUTHVEN D M. Principles of Adsorption and Adsorption Processes[M]. New York:John Wiley & Sons, 1984. |
[8] | OLAJOSSY A, GAWDZIK A, BUDNER Z, et al. Methane separation from coal mine methane gas by vacuum pressure swing adsorption[J]. Chem. Eng. Res. Des., 2003, 81(4):474-482. |
[9] | BUCZEK B. Methane recovery from coal mine gases using carbonaceous adsorbents[J]. Inz. Chem. Procesowa, 1996, 10:205-209. |
[10] | BALYS M, BUCZEK B, ZIETKIEWICZ J. Modeling study of PSA process for methane recovery from mine gases[J]. Inz. Chem. Procesowa, 1999, 18:205-210. |
[11] | BUCZEK B. Development of texture of carbonaceous sorbent for use in methane recovery from gaseous mixtures[J]. Inz. Chem. Procesowa, 2000, 21(3):385-392. |
[12] | PARK Y, MOON D K, KIM Y H, et al. Adsorption isotherms of CO2, CO, N2, CH4, Ar and H2 on activated carbon and zeolite LiX up to 1.0 MPa[J]. Adsorption, 2014, 20(4):1-17. |
[13] | BAKSH M S A, YANG R T, CHUNG D D L. Composite sorbents by chemical vapor deposition on activated carbon[J]. Carbon, 1989, 27(6):931-934. |
[14] | KENNEDY D A, MUJCIN M, TRUDEAU E, et al. Pure and binary adsorption equilibria of methane and nitrogen on activated carbons, desiccants, and zeolites at different pressures[J]. J. Chem. Eng. Data, 2016, 61(9):3163-3176. |
[15] | AWADALLAH F A, AL-MUHTASEB S A, JEONG H K. Selective adsorption of carbon dioxide, methane and nitrogen using resorcinol-formaldehyde-xerogel activated carbon[J]. Adsorption, 2017, 23(7):933-944. |
[16] | 辜敏, 鲜学福. 模拟的煤层气在活性炭吸附柱上穿透曲线的研究[J]. 天然气化工(C1化学与化工), 2003, 28(2):23-25. GU M, XIAN X F. A study on breakthrough curves of simulated coal bed gas on activated carbon adsorption column[J]. Nat. Gas Chem. Ind., 2003, 28(2):23-25. |
[17] | 辜敏, 鲜学福, 张代均, 等. 变压吸附技术分离CH4/N2气体混合物[J]. 煤炭学报, 2002, 27(2):197-200. GU M, XIAN X F, ZHANG D J, et al. Separation of CH4/N2 gas mixture by pressure swing adsorption processes[J]. J. China Coal Soc., 2002, 27(2):197-200. |
[18] | 辜敏, 陈昌国, 鲜学福. 抽放煤层气变压吸附过程的数学模拟[J]. 煤炭学报, 2001, 26(3):323-326. GU M, CHEN C G, XIAN X F. Numerical simulation of pressure swing adsorption processes for coal bed gas extracted[J]. J. China Coal Soc., 2001, 26(3):323-326. |
[19] | 张薄. 煤基颗粒活性炭的制备及其在气体分离中的应用[D]. 重庆:重庆大学, 2012. ZHANG B. Preparation of coal based activated carbon and its application in gas separation[D]. Chongqing:Chongqing University, 2012. |
[20] | GU M, ZHANG B, QI Z, et al. Effects of pore structure of granular activated carbons on CH4 enrichment from CH4/N2 by vacuum pressure swing adsorption[J]. Sep. Purif. Technol., 2015, 146:213-218. |
[21] | QU D, YANG Y, LU K, et al. Microstructure effect of carbon materials on the low-concentration methane adsorption separation from its mixture with nitrogen[J]. Adsorption, 2018, 24(4):357-369. |
[22] | 周理, 周亚平. 高表面活性炭变压吸附分离甲烷/氮气混合物的方法:02117916.6[P]. 2003. ZHOU L, ZHOU Y P. A method to separate methane/nitrogen mixture by pressure swing adsorption with high surface activated carbon:02117916.6[P]. 2003. |
[23] | 常心洁, 刘应书, 刘文海, 等. 变压吸附法分离低浓度瓦斯的试验研究[J]. 低温与特气, 2006, 24(6):18-21. CHANG X J, LIU Y S, LIU W H, et al. Experimental study on PSA low concentration CH4/air gas mixture separation[J]. Low Temp. Spcl. Gases, 2006, 24(6):18-21. |
[24] | PAN H, YI Y, LIN Q, et al. Effect of surface chemistry and textural properties of activated carbons for CH4 selective adsorption through low-concentration coal bed methane[J]. J. Chem. Eng. Data, 2016, 61(6):2120-2127. |
[25] | PAN H, ZHAO J, LIN Q, et al. Preparation and characterization of activated carbons from bamboo sawdust and its application for CH4 selectivity adsorption from a CH4/N2 system[J]. Energy Fuels, 2016, 30(12):10730-10738. |
[26] | HUANG Q L, FAROOQ S, KARIMI I. Binary and ternary adsorption kinetics of gases in carbon molecular sieves[J]. Langmuir, 2003, 19(14):5722-5734. |
[27] | HUANG Q L, SUNDARAM S, FAROOQ S. Revisiting transport of gases in the micropores of carbon molecular sieves[J]. Langmuir, 2003, 19(2):393-405. |
[28] | CAVENATI S, GRANDE C A, RODRIGUES A E. Separation of methane and nitrogen by adsorption on carbon molecular sieve[J]. Sep. Sci. Technol., 2005, 40(13):2721-2743. |
[29] | FATEHI A, LOUGHLIN K, HASSAN M. Separation of methane-nitrogen mixtures by pressure swing adsorption using a carbon molecular sieve[J]. Gas Sep. Purif., 1995, 9(3):199-204. |
[30] | 张进华. 煤层气提纯用碳分子筛的研制及分离性能研究[J]. 煤炭科学技术, 2015, 43(6):141-145. ZHANG J H. Study on development and separation performances of carbon molecular sieve applied to coalbed methane purification[J]. Coal Sci. Technol., 2015, 43(6):141-145. |
[31] | YAO K X, CHEN Y, LU Y, et al. Ultramicroporous carbon with extremely narrow pore distribution and very high nitrogen doping for efficient methane mixture gases upgrading[J]. Carbon, 2017, 122:258-265. |
[32] | 叶振华. 化工吸附分离过程[M]. 北京:中国石化出版社, 1992. YE Z H. Chemical Adsorption and Separation Process[M]. Beijing:China Petrochemical Press, 1992. |
[33] | 杨江峰, 赵强, 于秋红, 等. 煤层气回收及CH4/N2分离PSA材料的研究进展[J]. 化工进展, 2011, 30(4):793-801. YANG J F, ZHAO Q, YU Q H, et al. Progress of recovery of coal bed methane and adsorption materials for separation of CH4/N2 by pressure swing adsorption[J]. Chem. Ind. Eng. Prog., 2011, 30(4):793-801. |
[34] | BARRER R M. Zeolites and Clay Minerals as Sorbents and Molecular Sieves[M]. New York:Academic Press, 1978:829-830. |
[35] | HAQ N, RUTHVEN D M. Chromatographic study of sorption and diffusion in 4A zeolite[J]. J. Colloid Interface Sci., 1986, 112(1):154-163. |
[36] | TEZEL F H, APOLONATOS G. Chromatographic study of adsorption for N2, CO and CH4 in molecular sieve zeolites[J]. Gas Sep. Purif., 1993, 7(1):11-17. |
[37] | HABGOOD H W. The kinetics of molecular sieve action. sorption of nitrogen-methane mixtures by Linde molecular sieve 4A[J]. Can. J. Chem., 1958, 36(10):1384-1397. |
[38] | CAVENATI S, GRANDE C A, RODRIGUES A E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures[J]. J. Chem. Eng. Data, 2004, 49(4):1095-1101. |
[39] | HERNÁNDEZ-HUESCA R, DI?AZ L, AGUILAR-ARMENTA G. Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites[J]. Sep. Purif. Technol., 1999, 15(2):163-173. |
[40] | ACKLEY M W, YANG R T. Adsorption characteristics of high-exchange clinoptilolites[J]. Ind. Eng. Chem. Res., 1991, 30(12):2523-2530. |
[41] | AGUILAR-ARMENTA G, PATIÑO-IGLESIAS M E, LEYVA-RAMOS R. Adsorption kinetic behaviour of pure CO2, N2 and CH4 in natural clinoptilolite at different temperatures[J]. Adsorpt. Sci. Technol., 2003, 21(1):81-91. |
[42] | KOUVELOS E, KESORE K, STERIOTIS T, et al. High pressure N2/CH4 adsorption measurements in clinoptilolites[J]. Microporous Mesoporous Mater., 2007, 99(1):106-111. |
[43] | JAYARAMAN A, YANG R T, CHINN D, et al. Tailored clinoptilolites for nitrogen/methane separation[J]. Ind. Eng. Chem. Res., 2005, 44(14):5184-5192. |
[44] | 杨程, 齐金山, 崔杏雨, 等. A型沸石/活性炭复合材料的制备及甲烷/氮气吸附分离性能[J]. 应用化学, 2018, 35(4):462-468. YANG C, QI J S, CUI X Y, et al. Synthesis of zeolite a/activated carbon composite and CH4/N2 adsorption separation performance[J]. Chin. J. Appl. Chem. 2018, 35(4):462-468. |
[45] | KUZNICKI S M. Large-pored crystalline titanium molecular sieve zeolites:US4853202[P]. 1989. |
[46] | BRAUNBARTH C, HILLHOUSE H W, NAIR S, et al. Structure of strontium ion-exchanged ETS-4 microporous molecular sieves[J]. Chem. Mater., 2000, 12(7):1857-1865. |
[47] | BELL V A, DESAI B T, KUZNICKI S M, et al. Small-pored crystalline titanium molecular sieve zeolites and their use in gas separation processes:EP1042225[P]. 2000. |
[48] | MARATHE R, MANTRI K, SRINIVASAN M, et al. Effect of ion exchange and dehydration temperature on the adsorption and diffusion of gases in ETS-4[J]. Ind. Eng. Chem. Res., 2004, 43(17):5281-5290. |
[49] | GRANDE C A, CAVENATI S, DA SILVA F A, et al. Carbon molecular sieves for hydrocarbon separations by adsorption[J]. Ind. Eng. Chem. Res., 2005, 44(18):7218-7227. |
[50] | MAJUMDAR B, BHADRA S, MARATHE R, et al. Adsorption and diffusion of methane and nitrogen in barium exchanged ETS-4[J]. Ind. Eng. Chem. Res., 2011, 50(5):3021-3034. |
[51] | KUZNICKI S M. Preparation of small-pored crystalline titanium molecular sieve zeolites:US4938939[P]. 1990. |
[52] | CHAO C C. Selective adsorption on magnesium-containing clinoptilolites:US4964889[P]. 1990. |
[53] | DOLAN W B, BUTWELL K F. Selective removal of nitrogen from natural gas by pressure swing adsorption:US6444012[P]. 2002. |
[54] | KUZNICKI S M, BELL V A, NAIR S, et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules[J]. Nature, 2001, 412(6848):720-724. |
[55] | SAHA D, BAO Z, FENG J, et al. Adsorption of CO2, CH4, N2O, and N2on MOF-5, MOF-177, and zeolite 5A[J]. Environ. Sci. Technol., 2010, 44(5):1820-1826. |
[56] | HU J, SUN T, LIU X, et al. Separation of CH4/N2 mixtures in metal-organic frameworks with 1D micro-channels[J]. RSC Adv., 2016, 6:64039-64046. |
[57] | LIANG Y L, LI F Y, JIA W W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE J., 2018, doi:10.1002/aic.16335. |
[58] | 郑丽君, 龚奇菡, 李雪静, 等. 金属有机骨架用于气体存储、吸附分离的研究进展[J]. 化工进展, 2017, 36(11):4116-4123. ZHENG L J, GONG Q H, LI X J, et al. Progress of metal-organic frameworks for selective gas storage, adsorption and separation[J]. Chem. Ind. Eng. Prog., 2017, 36(11):4116-4123. |
[59] | MILTON R M. Molecular sieve adsorbents:US 2882243[P]. 1959. |
[60] | SKARSTROM C W. Method and apparatus for fractionating gaseous mixtures by adsorption:US 2944627[P]. 1960. |
[61] | DOMINE D, GUERIN D M P. Process for separating a binary gas mixture by contact with an adsorbent:US3242645[P]. 1966. |
[62] | YANG R T. Gas Separation by Adsorption Processes[M]. London:Imperial College Press, 1986. |
[63] | 常心洁, 刘应书, 刘文海, 等. 低压变压吸附法分离净化低浓度瓦斯的试验研究[J]. 中国煤层气, 2006, 3(4):39-43. CHANG X J, LIU Y S, LIU W H, et al. Experimental study on PSA for low quality coal mine methane separation and purification[J]. China Coalbed Methane, 2006, 3(4):39-43. |
[64] | 刘应书, 李永玲, 张辉, 等. 煤矿低浓度瓦斯及其分离富集技术[J]. 气体分离, 2010, 1:53-59. LIU Y S, LI Y L, ZHANG H, et al. Low concentration coal mine methane and its enrichment technology[J]. Gas Sep., 2010, 1:53-59. |
[65] | 杨雄, 刘应书, 李永玲, 等. 基于活性炭的真空变压吸附提浓煤层气甲烷的实验研究[J]. 煤炭学报, 2010, 35(6):987-991. YANG X, LIU Y S, LI Y L, et al. The experimental study on upgrade of coal mine gas by vacuum pressure swing adsorption with activated carbon[J]. J. China Coal Soc., 2010, 35(6):987-991. |
[66] | 周圆圆, 杨华伟, 张东辉. 甲烷/氮气变压吸附分离的实验与模拟[J]. 天然气化工(C1化学与化工), 2011, 36(5):21-27. ZHOU Y Y, YANG H W, ZHANG D H. Simulation and experiment for the pressure swing adsorption separation of methane and nitrogen[J]. Nat. Gas Chem. Ind., 2011, 36(5):21-27. |
[67] | LIU C, ZHOU Y, SUN Y, et al. Enrichment of coal-bed methane by PSA complemented with CO2 displacement[J]. AIChE J., 2011, 57(3):645-654. |
[68] | 张正旺, 杨华伟, 张东辉, 等. 新型真空变压吸附法模拟分离N2/CH4/CO2[J]. 现代化工, 2014, 34(3):147-151. ZHANG Z W, YANG H W, ZHANG D H, et al. Simulation of N2/CH4/CO2 mixture separation by new VPSA cycle[J]. Mod. Chem. Ind., 2014, 34(3):147-151. |
[69] | 周言, 沈圆辉, 付强, 等. 真空变压吸附分离CH4/N2/O2实验、模拟与安评[J]. 化工学报, 2017, 68(2):723-731. ZHOU Y, SHEN Y H, FU Q, et al. Experiment, simulation and safety evaluation of vacuum pressure swing adsorption for CH4/N2/O2 separation[J]. CIESC Journal, 2017, 68(2):723-731. |
[70] | 曲思建, 董卫国, 李雪飞, 等. 低浓度煤层气脱氧浓缩工艺技术开发与应用[J]. 煤炭学报, 2014, 39(8):1539-1544. QU S J, DONG W G, LI X F, et al. Research and application of the low concentrated coal bed methane upgrading technique[J]. J. China Coal Soc., 2014, 39(8):1539-1544. |
[71] | 王琰. 空气中低含量甲烷的变压吸附分离[D]. 天津:天津大学, 2004. WANG Y. Separation of low content methane from air by pressure swing adsorption[D]. Tianjin:Tianjin University, 2004. |
[72] | 崔乐雨, 张东辉, 苏伟, 等. 变压吸附法回收氮气中的微量甲烷:实验与模型[J]. 天然气化工(C1化学与化工), 2008, 33(6):1-5. CUI L Y, ZHANG D H, SU W, et al. Recovery of trace methane from nitrogen by PSA:experiment and model[J]. Nat. Gas Chem. Ind., 2008, 33(6):1-5. |
[73] | 雷利春. 煤矿乏风中低浓度甲烷的变压吸附提纯[D]. 大连:大连理工大学, 2010. LEI L C. Enrichment of ventilization air methane by pressure swing adsorption[D]. Dalian:Dalian University of Technology, 2010. |
[74] | OLAJOSSY A. Effective recovery of methane from coal mine methane gas by vacuum pressure swing adsorption:a pilot scale case study[J]. Chem. Eng. Sci., 2013, 1(4):46-54. |
[75] | JAYARAMAN A, HERNANDEZ-MALDONADO A J, YANG R T, et al. Clinoptilolites for nitrogen/methane separation[J]. Chem. Eng. Sci., 2004, 59(12):2407-2417. |
[76] | KAPOOR A, YANG R. Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon[J]. Chem. Eng. Sci., 1989, 44(8):1723-1733. |
[77] | JAYARAMAN A, CHIAO A S, PADIN J, et al. Kinetic separation of methane/carbon dioxide by molecular sieve carbons[J]. Sep. Sci. Technol., 2002, 37(11):2505-2528. |
[78] | CAVENATI S, GRANDE C A, RODRIGUES A E. Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption[J]. Energy Fuels, 2006, 20(6):2648-2659. |
[79] | ACKLEY M W, YANG R T. Kinetic separation by pressure swing adsorption:method of characteristics model[J]. AIChE J., 1990, 36(8):1229-1238. |
[80] | DELGADO J A, UGUINA M A, SOTELO J L, et al. Numerical simulation of a three-bed PSA cycle for the methane/nitrogen separation with silicalite[J]. Sep. Purif. Technol., 2011, 77(1):7-17. |
[81] | 李胜男. 吸附法浓缩煤层甲烷的实验研究[D]. 天津:天津大学, 2006. LI S N. Preliminary study of concentrating coalbed methane by adsorption[D]. Tianjin:Tianjin University, 2006. |
[82] | 杨明莉. 煤层甲烷变压吸附浓缩的研究[D]. 重庆:重庆大学, 2004. YANG M L. Study on enrichment of coal bed methane by pressure swing adsorption[D]. Chongqing:Chongqing University, 2012. |
[83] | 张福凯, 徐龙君, 鲜学福. 改性煤变压吸附分离煤层气中甲烷的研究[J]. 天然气化工(Cl化学与化工), 2008, 33(4):17-19. ZHANG F K, XU L J, XIAN X F. Separation of methane from coal-bed gas by pressure swing adsorption using modified coals as adsorbents[J]. Nat. Gas Chem. Ind., 2008, 33(4):17-19. |
[84] | LI Y L, MENG Y, LIU Y S, et al. A novel VPSA process for ventilation air methane enrichment by active carbon[J]. Adv. Mater. Res., 2012, 479/480/481:648-653. |
[85] | ZHOU Y, FU Q, SHEN Y, et al. Upgrade of low-concentration oxygen-bearing CBM by VPSA process:performance study and safety analysis[J]. Energy Fuels, 2016, 30(2):1496-1509. |
[86] | 韩治洋, 丁兆阳, 韩旸湲, 等. 真空变压吸附分离氮气甲烷的模拟与控制[J]. 化工学报, 2018, 69(2):750-758. HAN Z Y, DING Z Y, HAN Y Y, et al. Simulation and control of vacuum pressure swing adsorption for N2/CH4 separation[J]. CIESC Journal, 2018, 69(2):750-758. |
[87] | FU Q, YAN H, SHEN Y, et al. Optimal design and control of pressure swing adsorption process for N2/CH4 separation[J]. J. Clean. Prod., 2018, 170:704-714. |
[88] | SUN W, SHEN Y, ZHANG D, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4separation under external disturbances[J]. Ind. Eng. Chem. Res., 2015, 54(30):7489-7501. |
[89] | SANT A H R, BARRETO A G, TAVARES F W, et al. Machine learning model and optimization of a PSA unit for methane-nitrogen separation[J]. Comput. Chem. Eng., 2017, 104:377-391. |
[90] | TISELIUS A. Displacement development in adsorption analysis[J]. Ark. Kemi. Mineral Geol., 1943, 16A:1-18. |
[91] | GUIOCHON G, FELINGER A, SHIRAZI D G. Fundamentals of Preparative and Nonlinear Chromatography[M]. New York:Academic Press, 2006. |
[92] | YANG Y, WU Y, LIU H, et al. Enrichment of ventilation air methane by adsorption with displacement chromatography technology:experiment and numerical simulation[J]. Chem. Eng. Sci., 2016, 149:215-228. |
[93] | BHATT T S, STORTI G, ROTA R. Optimal design of dual-reflux pressure swing adsorption units via equilibrium theory[J]. Chem. Eng. Sci., 2013, 102(15):42-55. |
[94] | LEAVITT F W. Duplex adsorption process:US5085674[P]. 1992. |
[95] | SALEMAN T L, LI G, RUFFORD T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chem. Eng. J., 2015, 281:739-748. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[6] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[9] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[10] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[13] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[14] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[15] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||