化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4530-4541.DOI: 10.11949/j.issn.0438-1157.20180514

• 综述与专论 • 上一篇    下一篇

基于微纳流控技术的流体相态特性研究进展

鲍博1, 赵双良1, 徐建鸿2   

  1. 1. 化学工程联合国家重点实验室, 华东理工大学, 上海 200237;
    2. 化学工程联合国家重点实验室, 清华大学, 北京 100084
  • 收稿日期:2018-05-15 修回日期:2018-07-09 出版日期:2018-11-05 发布日期:2018-11-05
  • 通讯作者: 鲍博
  • 基金资助:

    国家自然科学基金项目(21808056)。

Progress in studying fluid phase behaviours with micro-and nano-fluidic technology

BAO Bo1, ZHAO Shuangliang1, XU Jianhong2   

  1. 1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China;
    2. State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2018-05-15 Revised:2018-07-09 Online:2018-11-05 Published:2018-11-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21808056).

摘要:

微纳流控技术是在微纳米尺度下研究并检测流体的作用和性质,具有可视化和快速精准等技术优势。在化工热力学研究中,近二十年来逐渐兴起了基于微纳流控技术的流体相态特性研究。详细阐述了微纳流控技术在流体相态特性领域的研究进展,重点总结了基于微纳流控技术的流体物质相态特性研究的各个领域,主要涵盖了蛋白质、聚合物、表面活性剂与盐,以及工业气体与石油天然气。其中,基于微流控技术的流体相态特性检测分析手段,成功地弥补了传统“压强-体积-温度”(pressure-volume-temperature,PVT)方法中样本体量大、传质传热慢、耗时长和高温高压高危险性等缺点,因而具有很强的实用导向性;纳流控技术则以研究纳米尺度下特有的流体相态特性为主要目标,因而具有重要的科学意义和应用价值。同时展望了微纳流控技术在流体相态特性领域研究的发展前景。

关键词: 相变, 微流体学, 纳米技术, 纳流体学, 多相流

Abstract:

Microfluidics and nanofluidics investigates fluid behaviours and measures fluid properties in micro-and nano-scale, offering unique advantages of visualization, high speed and high accuracy. The recent two decades witnesses the boom of micro-and nano-fluidic technology in fluid phase behaviour studies. In this paper, we provide a comprehensive review of recent progress in studying fluid phase behaviours using micro-and nano-fluidic technology. Specifically, we focus on the research progress in phase behaviours of protein, polymer, surfactant and salt, industrial gas, and oil and gas. Microfluidic methods are mostly developed for practical purposes to compete with conventional PVT (pressure-volume-temperature) method, which suffers a series of deficiencies such as sample-and time-consuming, slow heat and mass transfer, and safety concerns associated with large sample volume. On the other hand, nanofluidic methods focus on uncovering fundamentals of nano-confinement effect on fluid phase behaviours, which exhibits high significance in science merits. At the same time, the development prospect of micro-nano flow control technology in the field of fluid phase characteristics is prospected.

Key words: phase change, microfluidics, nanotechnology, nanofluidics, multiphase flow

中图分类号: