[1] |
HU Y, CHENG H. Water pollution during China's industrial transition[J]. Environmental Development, 2013, 8:57-73.
|
[2] |
HUANG C, DONG C, TANG Z. Advanced chemical oxidation:its present role and potential future in hazardous waste treatment[J]. Waste Management, 1993, 13(5):361-377.
|
[3] |
Kuznetsova E V, Savinov E N, Vostrikova L A, et al. Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2[J]. Applied Catalysis B Environmental, 2004, 51(3):165-170.
|
[4] |
Hermanek M, Zboril R, Medrik I, et al. Catalytic efficiency of iron(Ⅲ) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles[J]. Journal of the American Chemical Society, 2007, 129(35):10929-10936.
|
[5] |
Pouran S R, Aziz A, Wan M, et al. Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique[J]. Measurement, 2015, 59:314-328.
|
[6] |
He J, Ma W, He J, et al. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH[J]. Applied Catalysis B Environmental, 2002, 39(3):211-220.
|
[7] |
Zhong X, Royer S, Zhang H, et al. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono-photo-Fenton process[J]. Separation & Purification Technology, 2011, 80(1):163-171.
|
[8] |
Yang X J, Xu X M, Xu J, et al. Iron oxychloride (FeOCl):an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants[J]. Journal of the American Chemical Society, 2013, 135:16058-16061.
|
[9] |
Yang X J, Tian P F, Zhang X M, et al. The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation[J]. AIChE Journal, 2015, 61:166-176.
|
[10] |
Bokare A D, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275:121-135.
|
[11] |
Zhang L, Xu D, Hu C, et al. Framework Cu-doped AlPO4 as an effective Fenton-like catalyst for bisphenol A degradation[J]. Applied Catalysis B:Environmental, 2017, 207:9-16.
|
[12] |
Granato T, Katovic A, Valkaj K M, et al. Cu-silicalite-1 catalyst for the wet hydrogen peroxide oxidation of phenol[J]. Journal of Porous Materials, 2009, 16(2):227-232.
|
[13] |
Guzman-Vargas A, de la Rosa-Pineda J E, Oliver-Tolentino M A, et al. Stability of Cu species and zeolite structure on ecological heterogeneous Fenton discoloration-degradation of yellow 5 dye:efficiency on reusable Cu-Y catalysts[J]. Environmental Progress & Sustainable Energy, 2015, 34(4):990-998.
|
[14] |
Pan W, Zhang G, Zheng T, et al. Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation[J]. RSC Advances, 2015, 5(34):27043-27051.
|
[15] |
Subbaramaiah V, Srivastava V C, Mall I D. Catalytic activity of Cu/SBA-15 for peroxidation of pyridine bearing wastewater at atmospheric condition[J]. AIChE Journal, 2013, 59(7):2577-2586.
|
[16] |
Taran O P, Zagoruiko A N, Ayusheev A B, et al. Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study[J]. Chemical Engineering Journal, 2015, 282:108-115.
|
[17] |
Björkbacka Å, Yang M, Gasparrini C, et al. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides[J]. Dalton Transactions, 2015, 44(36):16045-16051.
|
[18] |
Lyu L, Zhang L, Hu C. Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres[J]. Chemical Engineering Journal, 2015, 274:298-306.
|
[19] |
Lyu L, Zhang L, Hu C, et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification[J]. Journal of Materials Chemistry A, 2016, 4(22):8610-8619.
|
[20] |
Lyu L, Zhang L, Wang Q, et al. Enhanced Fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation[J]. Environmental Science & Technology, 2015, 49(14):8639-8647.
|
[21] |
Wang H, Zhang L, Hu C, et al. Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions[J]. Chemical Engineering Journal, 2018, 332:572-581.
|
[22] |
Zhang Y, Liu C, Xu B, et al. Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2:combination of adsorption and catalysis oxidation[J]. Applied Catalysis B:Environmental, 2016, 199:447-457.
|
[23] |
Sheng Y Y, Sun Y, Xu J, et al. Fenton-like degradation of rhodamine B over highly durable Cu-embedded alumina:kinetics and mechanism[J]. AIChE Journal, 2018, 64:538-549.
|
[24] |
Zhang X, Ding Y, Tang H, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst:efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236:251-262.
|
[25] |
Lai L, Zhang L, Hu C, et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification[J]. Journal of Materials Chemistry A, 2016, 4(22):8610-8619.
|
[26] |
Fu L, Li X, Liu M, et al. Insights into the nature of Cu doping in amorphous mesoporous alumina[J]. Journal of Materials Chemistry A, 2013, 1(46):14592-14605.
|
[27] |
Eisenberg G. Colorimetric determination of hydrogen peroxide[J]. Industrial & Engineering Chemistry Analytical Edition, 1943, 15(5):327-328.
|
[28] |
Lindsey M E, Tarr M A. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide[J]. Chemosphere, 2000, 41(3):409-417.
|
[29] |
Jensen M C R, Venkataramani K, Helveg S, et al. Morphology, dispersion, and stability of Cu nanoclusters on clean and hydroxylated α-Al2O3(0001) substrates[J]. The Journal of Physical Chemistry C, 2008, 112(43):16953-16960.
|
[30] |
TIAN P F, OUYANG L K, XU X Y, et al. The origin of palladium particle size effects in the direct synthesis of H2O2:is smaller better?[J]. Journal of Catalysis, 2017, 349:30-40.
|
[31] |
张国臣. 过氧化氢生产技术[M]. 北京:化学工业出版社, 2012:54-72. ZHANG G C. Production Technology of H2O2[M]. Beijing:Chemical Industry Press, 2012:54-72.
|
[32] |
GOOR G, GLENNEBERG J, JACOBI S. Hydrogen Peroxide[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2007:396-397
|
[33] |
Yang X j, Xu X m, Xu X c, et al. Modeling and kinetics study of Bisphenol A (BPA) degradation over an FeOCl/SiO2 Fenton-like catalyst[J]. Catalysis Today, 2016, 276:85-96.
|
[34] |
Arslan-Alaton I, Tureli G, Olmez-Hanci T. Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes:optimization by response surface methodology[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009, 202(2):142-153.
|
[35] |
Wu Y, Zhou S, Qin F, et al. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM)[J]. Journal of Hazardous Materials, 2010, 180(1):456-465.
|
[36] |
Mitsika E E, Christophoridis C, Fytianos K. Fenton and Fenton-like oxidation of pesticide acetamiprid in water samples:kinetic study of the degradation and optimization using response surface methodology[J]. Chemosphere, 2013, 93(9):1818-1825.
|
[37] |
Cruz-González K, Torres-López O, García-León A, et al. Determination of optimum operating parameters for acid yellow 36 decolorization by electro-Fenton process using BDD cathode[J]. Chemical Engineering Journal, 2010, 160(1):199-206.
|
[38] |
Li H, Gong Y, Huang Q, et al. Degradation of orange Ⅱ by UV-assisted advanced Fenton process:response surface approach, degradation pathway, and biodegradability[J]. Industrial & Engineering Chemistry Research, 2013, 52(44):15560-15567.
|
[39] |
Zhu X, Tian J, Liu R, et al. Optimization of Fenton and electro-Fenton oxidation of biologically treated coking wastewater using response surface methodology[J]. Separation and Purification Technology, 2011, 81(3):444-450.
|
[40] |
王欣, 王金翠, 殷晓梅, 等. 乙酰甲胺磷UV-TiO2/类Fenton光催化降解过程的响应面法优化[J]. 应用化工, 2013, 42(1):33-40. WANG X, WANG J C, YIN X M, et al. Optimization of photocatalytic degradation of acephate by UV-TiO2/Fenton-like process using response surface methodology[J]. Applied Chemical Industry, 2013, 42(1):33-40.
|
[41] |
Zhang P, Yuan S, Liao P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J]. Geochimicaet Cosmochimica Acta, 2016, 172:444-457.
|
[42] |
He J, Yang X, Men B, et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials:a review[J]. Journal of Environmental Sciences, 2016, 39:97-109.
|