[1] |
SCHULZ H. Chemicals, feedstocks and fuels from Fischer-Tropsch and related syntheses[M]//Future Sources of Organic Raw Materials:CHEMRAWN I:CHEMRAWN Chemical Research Applied to Words Needs.2013:167.
|
[2] |
CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing:controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107:699-706.
|
[3] |
ZHANG Z, DAI W, XU X C, et al. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J]. AIChE Journal, 2017, 63(10):4451-4464.
|
[4] |
WANG S, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation:a review[J]. Energy & Fuels, 2004, 18(4):1126-1139.
|
[5] |
CHENG Y, LIN J, XU K, et al. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS Catalysis, 2016, 6(1):389-399.
|
[6] |
JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J].Science, 2016, 351(6277):1065-1068.
|
[7] |
CHENG K, GU B, LIU X, et al. Direct and highly selective conversion of synthesis gas to lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J].Angew. Chem. Int. Ed., 2016;55:4725-4728.
|
[8] |
AL-SAYARI S A. Catalytic conversion of syngas to olefins over Mn-Fe catalysts[J]. Ceramics International, 2014, 40(1):723-728.
|
[9] |
ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angew. Chem., 2016, 128(34):10056-10061.
|
[10] |
ESCHEMANN T O, LAMME W S, MANCHESTER R L, et al. Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2015, 328:130-138.
|
[11] |
SUN B, XU K, NGUYEN L, et al. Preparation and catalysis of carbon-supported iron catalysts for Fischer-Tropsch synthesis[J]. ChemCatChem, 2012, 4(10):1498-1511.
|
[12] |
CALDERONE V R, SHIJU N R, CURULLA-FERRÉ D, et al. De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts[J]. Angewandtte Chemie International Edition, 2013, 52(16):4397-4401.
|
[13] |
FU D, DAI W, XU X, et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem, 2015, 7(5):752-756.
|
[14] |
SANTOS V P, WEZENDONK T A, JAÉN J J D, et al. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nature Communications, 2015, 6:6451.
|
[15] |
CHENG Y, LIN J, WU T, et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B:Environmental, 2017, 204:475-485.
|
[16] |
GALVIS H M T, KOEKEN A C J, BITTER J H, et al. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catalysis Today, 2013, 215:95-102.
|
[17] |
AN B, CHENG K, WANG C, et al. Pyrolysis of metal-organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016, 6(6):3610-3618.
|
[18] |
PARK J Y, LEE Y J, KHANNA P K, et al. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts:effect of particle size of iron oxide[J]. Journal of Molecular Catalysis A:Chemical, 2010, 323(1):84-90.
|
[19] |
KOCK A, FORTUIN H M, GEUS J W. The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres[J]. Journal of Catalysis, 1985, 96(1):261-275.
|
[20] |
SUO H, WANG S, ZHANG C, et al. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 2012, 286:111-123.
|
[21] |
RAO K, HUGGINS F E, MAHAJAN V, et al. Mössbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis[J]. Topics in Catalysis, 1995, 2(1):71-78.
|
[22] |
TORRES G H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838.
|
[23] |
LU J Z, YANG L J, XU B L, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
|
[24] |
CHEN X Q, DENG D H, PAN X L, et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chemical Communication, 2015, 51:217-220.
|
[25] |
WU G, MORE K L, JOHNSTON C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028):443-447.
|
[26] |
VARELA A S, RANJBAR SAHRAIE N, STEINBERG J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angewandte Chemie International Edition, 2015, 54(37):10758-10762.
|
[27] |
SHI B, REN J, WANG A, et al. Synthesis and characterization of wormhole-like mesostructured polyaniline[J]. Journal of Materials Science, 2009, 44(24):6498.
|
[28] |
ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2015, 5(3):1433-1437.
|
[29] |
MALARD L M, PIMENTA M A, DRESSELHAUS G, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5/6):51-87.
|
[30] |
KNUTSEN K P, JOHNSON J C, MILLER A E, et al. High spectral resolution multiplex CARS spectroscopy using chirped pulses[J]. Chemical Physics Letters, 2004, 387(4):436-441.
|
[31] |
谭平恒, 李峰, 成会明. 碳材料的拉曼光谱:从纳米管到金刚石[M]. 北京:化学工业出版社, 2007. TAN P H, LI F, CHENG H M. Raman Spectrum of Carbon Materials:from Nanotube to Diamond[M]. Beijing:Chemical Industry Press, 2007.
|
[32] |
BRUNA M, OTT A K, IJÄS M, et al. Doping dependence of the Raman spectrum of defected graphene[J]. ACS Nano, 2014, 8(7):7432-7441.
|
[33] |
DAS A, PISANA S, CHAKRABORTY B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature Nanotechnology, 2008, 3(4):210-215.
|
[34] |
PENDYALA V R R, GRAHAM U M, JACOBS G, et al. Fischer-Tropsch synthesis:morphology, phase transformation, and carbon-layer growth of iron-based catalysts[J]. ChemCatChem, 2014, 6(7):1952-1960.
|
[35] |
KUNDU S, XIA W, BUSSER W, et al. The formation of nitrogen-containing functional groups on carbon nanotube surfaces:a quantitative XPS and TPD study[J]. Physical Chemistry Chemical Physics, 2010, 12(17):4351-4359.
|
[36] |
SÁNCHEZ M D, CHEN P, REINECKE T, et al. The role of oxygen-and nitrogen-containing surface groups on the sintering of iron nanoparticles on carbon nanotubes in different atmospheres[J]. ChemCatChem, 2012, 4(12):1997-2004.
|
[37] |
GOLCZAK S, KANCIURZEWSKA A, FAHLMAN M, et al. Comparative XPS surface study of polyaniline thin films[J]. Solid State Ionics, 2008, 179(39):2234-2239.
|
[38] |
SCHULTE H J, GRAF B, XIA W, et al. Nitrogen-and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis[J]. ChemCatChem, 2012, 4(3):350-355.
|
[39] |
LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fscher-Topsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
|
[40] |
XIA W. Interactions between metal species and nitrogen-functionalized carbon nanotubes[J]. Catalysis Science & Technology, 2016, 6(3):630-644.
|
[41] |
LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fscher-Topsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
|
[42] |
GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis, 2004, 36(12):1564-1574.
|
[43] |
TORRES GALVIS H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39):16207-16215.
|
[44] |
XIE J, YANG J, DUGULAN A I, et al. Size and promoter effects in supported iron Fischer-Tropsch catalysts:insights from experiment and theory[J]. ACS Catalysis, 2016, 6:3147-3157.
|