化工学报 ›› 2018, Vol. 69 ›› Issue (7): 2807-2814.DOI: 10.11949/j.issn.0438-1157.20171636
张良1, 刘啸尘2, 刘桂艳2, 吕波1, 冯旭东1, 李春1,2
收稿日期:
2017-12-12
修回日期:
2018-04-20
出版日期:
2018-07-05
发布日期:
2018-07-05
通讯作者:
李春
基金资助:
国家自然科学基金项目(21425624,21606019,21506011)。
ZHANG Liang1, LIU Xiaochen2, LIU Guiyan2, LÜ Bo1, FENG Xudong1, LI Chun1,2
Received:
2017-12-12
Revised:
2018-04-20
Online:
2018-07-05
Published:
2018-07-05
Supported by:
supported by the National Natural Science Foundation of China (21425624, 21606019, 21506011).
摘要:
生物转化在生物化工领域具有至关重要的作用,其过程中伴随着能量的消耗和释放,因此在设计与调控生物转化过程时,能量的供应与平衡是非常关键的因素。若通过外源直接供能的方式驱动反应,如直接添加含能辅因子,则反应效率无法令人满意且成本较高。为了持续推动催化反应的高效进行,引入能量循环以及含能辅因子的再生系统具有重要的意义及必要性。对目前研究较多的三种能量循环再生系统进行综述,并对其在代谢工程等领域的发展现状进行讨论,同时对其在体外无细胞催化过程中的应用进行展望。
中图分类号:
张良, 刘啸尘, 刘桂艳, 吕波, 冯旭东, 李春. 生物转化过程中的能量驱动与再生[J]. 化工学报, 2018, 69(7): 2807-2814.
ZHANG Liang, LIU Xiaochen, LIU Guiyan, LÜ Bo, FENG Xudong, LI Chun. Energy drive and regeneration in biotransformation[J]. CIESC Journal, 2018, 69(7): 2807-2814.
[1] | 冯旭东, 吕波, 李春. 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1):277-284. FENG X D, LÜ B, LI C. Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1):277-284. |
[2] | KOPPENOL W H, BOUNDS P L, DANG C V. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nature Reviews Cancer, 2011, 11(5):325-337. |
[3] | HYDER F, CHASE J R, BEHAR K L, et al. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C] NMR[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15):7612-7617. |
[4] | LAPORTE D C, KOSHLAND D E. A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle[J]. Nature, 1982, 300(5891):458-460. |
[5] | LOCHER K P. Mechanistic diversity in ATP-binding cassette (ABC) transporters[J]. Nature Structural & Molecular Biology, 2016, 23(6):487-493. |
[6] | DAWSON R J, LOCHER K P. Structure of a bacterial multidrug ABC transporter[J]. Nature, 2006, 443(7108):180-185. |
[7] | 王晓珠, 孙万梅, 马义峰, 等. 拟南芥ABC转运蛋白研究进展[J]. 植物生理学报, 2017, 53(2):133-144. WANG X Z, SUN W M, MA Y F, et al. Research progress of ABC transporters in Arabidopsis thaliana[J]. Plant Physiology Journal, 2017, 53(2):133-144. |
[8] | REES D C, JOHNSON E, LEWINSON O. ABC transporters:the power to change[J]. Nature Reviews Molecular Cell Biology, 2009, 10(3):218-227. |
[9] | HOLLENSTEIN K, DAWSON R J, LOCHER K P. Structure and mechanism of ABC transporter proteins[J]. Current Opinion in Structural Biology, 2007, 17(4):412-418. |
[10] | NAOE Y, NAKAMURA N, DOI A, et al. Crystal structure of bacterial haem importer complex in the inward-facing conformation[J]. Nature Communications, 2016, 7:13411. |
[11] | QASEM A H, PERACH M, LIVNAT-LEVANON N, et al. ATP binding and hydrolysis disrupts the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate binding protein[J]. Journal of Biological Chemistry, 2017, 292:14617-14624. |
[12] | OOMS M D, CAO T D, SARGENT E H, et al. Photon management for augmented photosynthesis[J]. Nature Communications, 2016, 7:12699. |
[13] | ROMERO E, NOVODEREZHKIN V I, GRONDELLE R V. Quantum design of photosynthesis for bio-inspired solar-energy conversion[J]. Nature, 2017, 543(7645):355-365. |
[14] | NELSON N, BENSHEM A. The complex architecture of oxygenic photosynthesis[J]. Nature Reviews Molecular Cell Biology, 2004, 5(12):971-982. |
[15] | ROSENBAUM M, AULENTA F, VILLANO M, et al. Cathodes as electron donors for microbial metabolism:Which extracellular electron transfer mechanisms are involved?[J]. Bioresource Technology, 2011, 102(1):324-333. |
[16] | NIELSEN L P, RISGAARDPETERSEN N, FOSSING H, et al. Electric currents couple spatially separated biogeochemical processes in marine sediment[J]. Nature, 2010, 463(7284):1071-1074. |
[17] | YAMAMOTO M, NAKAMURA R, KASAYA T, et al. Spontaneous and widespread electricity generation in natural deep-sea hydrothermal fields[J]. Angewandte Chemie, 2017, 56(21):5725-5728 |
[18] | BOSE A, GARDEL E J, VIDOUDEZ C, et al. Electron uptake by ironoxidizing phototrophic bacteria[J]. Nature Communications, 2014, 5:3391. |
[19] | HOFFMAN. Über die Pyrophosphatfraktion im Muskel[J]. Naturwissenschaften, 1929, 17(31):624-625. |
[20] | ANDEXER J N, RICHTER M. Emerging enzymes for ATP regeneration in biocatalytic processes[J]. Chembiochem A European Journal of Chemical Biology, 2015, 16(3):380-386. |
[21] | CRANS D C, KAZLAUSKAS R J, HIRSCHBEIN B L, et al. Enzymatic regeneration of adenosine 5'-triphosphate:acetyl phosphate, phosphoenolpyruvate, methoxycarbonyl phosphate, dihydroxyacetone phosphate, 5-phospho-α-D-ribosyl pyrophosphate, uridine-5'-diphosphoglucose[J]. Methods in Enzymology, 1987, 136:263-280. |
[22] | MENG Q, ZHANG Y, JU X, et al. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis[J]. Journal of Biotechnology, 2016, 226:8-13. |
[23] | AN C, ZHAO L, WEI Z, et al. Chemoenzymatic synthesis of 3'-phosphoadenosine-5'-phosphosulfate coupling with an ATP regeneration system[J]. Applied Microbiology & Biotechnology, 2017, 101(20):1-10. |
[24] | WU X, KOBORI H, ORITA I, et al. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD+ and NADP+[J]. Biotechnology & Bioengineering, 2012, 109(1):53-62. |
[25] | 黄志华, 刘铭, 王宝光, 等. 甲酸脱氢酶用于辅酶NADH再生的研究进展[J]. 过程工程学报, 2006, 6(6):1011-1016. HUANG Z H, LIU M, WANG B G, et al. Formate dehydrogenase and its application in cofactor NADH regeneration[J]. The Chinese Journal of Process Engineering, 2006, 6(6):1011-1016. |
[26] | ZHANG Y, HUANG Z, DU C, et al. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol[J]. Metabolic Engineering, 2009, 11(2):101-106. |
[27] | NG C Y, FARASAT I, MARANAS C D, et al. Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration[J]. Metabolic Engineering, 2015, 29:86-96. |
[28] | YING H, HOSSAIN G S, LI J, et al. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids[J]. Biotechnology & Bioengineering, 2017, 114(9):1928-1936. |
[29] | WIEDERSCHAIN G Y. Glycobiology:progress, problems, and perspectives[J]. Biochemistry Biokhimiia, 2013, 78(7):679-696. |
[30] | ZHANG X, WANG Y. Glycosylation quality control by the Golgi structure[J]. Journal of Molecular Biology, 2016, 428(16):3183-3193. |
[31] | RAI A, UMASHANKAR S, RAI M, et al. Coordinate regulation of metabolites glycosylation and stress hormones biosynthesis by TT8 in arabidopsis[J]. Plant Physiology, 2016, 171(4):2499-2515. |
[32] | LIANG D, LIU J, WU H, et al. ChemInform abstract:glycosyltransferases:mechanisms and applications in natural product development[J]. Chemical Society Reviews, 2015, 44(22):8350-8374. |
[33] | DE B F, MAERTENS J, BEAUPREZ J, et al. Biotechnological advances in UDP-sugar based glycosylation of small molecules[J]. Biotechnology Advances, 2015, 33(2):288-302. |
[34] | NEUFELD E F, HASSID W Z. Biosynthesis of saccharides from glycopyranosyl esters of nucleotides ("sugar nucleotides")[J]. Advances in Carbohydrate Chemistry, 1963, 18(12):309-356. |
[35] | SCHMÖLZER K, GUTMANN A, DIRICKS M, et al. Sucrose synthase:a unique glycosyltransferase for biocatalytic glycosylation process development[J]. Biotechnology Advances, 2015, 34(2):88-111. |
[36] | JUNG S C, KIM W, PARK S C, et al. Two ginseng UDPglycosyltransferases synthesize ginsenoside Rg3 and Rd[J]. Plant & Cell Physiology, 2014, 55(12):2177-2188. |
[37] | SHIBUYA M, NISHIMURA K, YASUYAMA N, et al. Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max[J]. FEBS Letters, 2010, 584(11):2258-2264. |
[38] | SCHMÖLZER K, LEMMERER M, GUTMANN A, et al. Integrated process design for biocatalytic synthesis by a Leloir glycosyltransferase:UDP-glucose production with sucrose synthase[J]. Biotechnology & Bioengineering, 2017, 114(4):924-928. |
[39] | HUANG F C, HINKELMANN J, HERMENAU A, et al. Enhanced production of β-glucosides by in-situ, UDP-glucose regeneration[J]. Journal of Biotechnology, 2016, 224:35-44. |
[40] | WANG Y, CHEN L, LI Y, et al. Efficient enzymatic production of rebaudioside A from stevioside[J]. Bioscience Biotechnology & Biochemistry, 2015, 80(1):67-73. |
[41] | LEPAK A, GUTMANN A, KULMER S T, et al. Creating a watersoluble resveratrol-based antioxidant through site-selective enzymatic glucosylation[J]. Chembiochem, 2015, 16(13):1870-1874. |
[42] | MICHLMAYR H, MALACHOVÁA, VARGA E, et al. Biochemical characterization of a recombinant UDP-glucosyltransferase from rice and enzymatic production of deoxynivalenol-3-o-β-D-glucoside[J]. Toxins, 2015, 7(7):2685-2700. |
[43] | GUTMANN A, BUNGARUANG L, WEBER H, et al. Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions[J]. Green Chemistry, 2014, 16(9):4417-4425. |
[44] | CASCHERA F, NOIREAUX V. A cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system[J]. Metabolic Engineering, 2015, 27:29-37. |
[45] | ALISSANDRATOS A, CARON K, LOAN T D, et al. ATP recycling with cell lysate for enzyme-catalyzed chemical synthesis, protein expression and PCR[J]. ACS Chemical Biology, 2016, 11(12):3289-3293. |
[46] | KIM J E, ZHANG Y P. Biosynthesis of D-xylulose 5-phosphate from D-xylose and polyphosphate through a minimized twoenzyme cascade[J]. Biotechnology & Bioengineering, 2016, 113(2):275-282. |
[47] | NAM D H, PARK C B. Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis[J]. Chembiochem A European Journal of Chemical Biology, 2012, 13(9):1278-1282. |
[48] | CHOI W S, LEE S H, KO J W, et al. Human urine-fueled light-driven NADH regeneration for redox biocatalysis[J]. Chemsuschem, 2016, 9(13):1559-1564. |
[49] | REEVE H A, LAUTERBACH L, LENZ O, et al. Enzyme-modified particles for selective biocatalytic hydrogenation by hydrogen-driven NADH recycling[J]. Chemcatchem, 2015, 7(21):3480-3487. |
[50] | FU J, YANG Y R, JOHNSON-BUCK A, et al. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm[J]. Nature Nanotechnology, 2014, 9(7):531-536. |
[51] | SHAO J, HAYASHI T, WANG P G. Enhanced production of alphagalactosyl epitopes by metabolically engineered Pichia pastoris[J]. Applied & Environmental Microbiology, 2003, 69(9):5238-5242. |
[52] | ENGELS L, HENZE M, HUMMEL W, et al. Enzyme module systems for the synthesis of uridine 5'-diphospho-α-D-glucuronic acid and nonsulfated human natural killer cell-1(hnk-1) epitope[J]. Advanced Synthesis & Catalysis, 2015, 357(8):1751-1762. |
[53] | CHUNG S K, RYU S I, LEE S B. Characterization of UDP-glucose 4-epimerase from Pyrococcus horikoshii:regeneration of UDP to produce UDP-galactose using two-enzyme system with trehalose[J]. Bioresource Technology, 2012, 110(110):423-429. |
[54] | WEYLER C, HEINZLE E. Multistep synthesis of UDP-glucose using tailored, permeabilized cells of E. coli[J]. Applied Biochemistry & Biotechnology, 2015, 175(8):1-8. |
[55] | LI L N, KONG J Q. Transcriptome-wide identification of sucrose synthase genes in Ornithogalum caudatum[J]. RSC Advances, 2016, 6(23):18778-18792. |
[56] | RUPPRATH C, KOPP M, HIRTZ D, et al. An enzyme module system for in situ regeneration of deoxythymidine 5'-diphosphate (DTDP)-activated deoxy sugars[J]. Advanced Synthesis & Catalysis, 2010, 349(8/9):1489-1496. |
[57] | DIRICKS M, GUTMANN A, DEBACKER S, et al. Sequence determinants of nucleotide binding in Sucrose Synthase:improving the affinity of a bacterial Sucrose Synthase for UDP by introducing plant residues[J]. Protein Engineering Design & Selection, 2016, 30(3):143-150. |
[58] | NIELSEN J. Yeast cell factories on the horizon[J]. Science, 2015, 349(6252):1050-1051. |
[59] | WANG Y, YIN J, CHEN G Q. Polyhydroxyalkanoates, challenges and opportunities[J]. Current Opinion in Biotechnology, 2014, 30(30):59-65. |
[60] | CHOI S Y, PARK S J, KIM W J, et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli[J]. Nature Biotechnology, 2016, 34(4):435-440. |
[61] | FORSTER A C, CHURCH G M. Towards synthesis of a minimal cell[J]. Molecular Systems Biology, 2006, 2(1):45-45. |
[62] | GIBSON D G, VENTER J C. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987):52-56. |
[63] | YU T, ZHOU Y J, WENNING L, et al. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acidderived chemicals[J]. Nature Communications, 2017, 8:15587. |
[64] | ZHOU Y J, BUIJS N A, ZHU Z, et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories[J]. Nature Communications, 2016, 7:11709. |
[65] | 许可, 吕波, 李春. 无细胞的合成生物技术--多酶催化与生物合成[J]. 中国科学:化学, 2015, 45(5):429-437 XU K, LÜ B, LI C. Cell-free synthetic biotechnology-multi-enzyme catalysis and biosynthesis[J]. Scientia Sinica:Chimica, 2015, 45(5):429-437. |
[66] | ZHANG Y H P, MYUNG S, YOU C, et al. Toward low-cost biomanufacturing through in vitro synthetic biology:bottom-up design[J]. Journal of Materials Chemistry, 2011, 21(47):18877-18886. |
[67] | ZHANG Y H P. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations:challenges and opportunities[J]. Biotechnology & Bioengineering, 2010, 105(4):663-677. |
[68] | GUTMANN A, NIDETZKY B. Unlocking the potential of leloir glycosyltransferases for applied biocatalysis:efficient synthesis of uridine 5'-diphosphate-glucose by sucrose synthase[J]. Advanced Synthesis & Catalysis, 2016, 358(22):3600-3609. |
[69] | GUTMANN A, LEPAK A, DIRICKS M, et al. Glycosyltransferase cascades for natural product glycosylation:use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP[J]. Biotechnology Journal, 2017, 12(7):1600557. |
[70] | YOU C, ZHANG Y H P. Biomanufacturing by in vitro biosystems containing complex enzyme mixtures[J]. Process Biochemistry, 2016, 52:106-114. |
[71] | ZHANG Y H P. What is vital (and not vital) to advance economicallycompetitive biofuels production[J]. Process Biochemistry, 2011, 46(11):2091-2110. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[3] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[4] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[5] | 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122. |
[6] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[7] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[8] | 毕浩然, 张洋, 王凯, 徐晨晨, 霍奕影, 陈必强, 谭天伟. 微生物制造绿色化学品研究进展[J]. 化工学报, 2023, 74(1): 1-13. |
[9] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[10] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[11] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[12] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[13] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
[14] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[15] | 王淋, 付乾, 肖帅, 李卓, 李俊, 张亮, 朱恂, 廖强. 高效可见光响应微生物/光电化学耦合人工光合作用系统[J]. 化工学报, 2022, 73(2): 887-893. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 565
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||