1 |
游丹, 李波, 林波, 等 . 制备大直径无气泡聚苯乙烯空心微球[J]. 强激光与粒子束, 2000, 12(3): 355-357.
|
|
You D , Li B , Lin B , et al . Fabrication of large diameter and vacuole-free polystyrene hollow microshells[J]. High Power Laser and Particle Beams, 2000, 12(3): 355-357.
|
2 |
Engl W , Backov R , Panizza P . Controlled production of emulsions and particles by milli- and microfluidic techniques[J]. Current Opinion in Colloid & Interface Science, 2008, 13(4): 206-216.
|
3 |
Liu M F , Zheng Y Q , Li J , et al . Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells[J]. Nuclear Fusion, 2017, 57(1): 16018.
|
4 |
Shang L R , Cheng Y , Zhao Y J . Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040.
|
5 |
Letts S A , Fearon E M , Buckley S R , et al . Preparation of hollow shell ICF targets using a depolymerizing mandrel[J]. MRS Proceedings, 1994, 372: 125.
|
6 |
Mcquillan B W , Nikroo A , Steinman D A , et al . The PAMS/GDP process for production of ICF target mandrels[J]. Fusion Technology, 1997, 31(4): 381-384.
|
7 |
Paguio R R , Nikroo A , Takagi M , et al . Fabrication and overcoating of divinylbenzene foam shells using dual initiators[J]. Journal of Applied Polymer Science, 2010, 101(4): 2523-2529.
|
8 |
Chiu D T , Lorenz R M , Jeffries G D M . Droplets for ultrasmall-volume analysis[J]. Analytical Chemistry, 2009, 81(13): 5111-5118.
|
9 |
Sugiura S , Nakajima M , Seki M . Prediction of droplet diameter for microchannel emulsification[J]. Langmuir, 2002, 18(10): 3854-3859.
|
10 |
汪国秀, 苏琳, 陈素芬, 等 . 大直径W1/O/W2乳粒的稳定性[J]. 强激光与粒子束, 2012, 24(2): 389-393.
|
|
Wang G X , Su L , Chen S F , et al . Stability of large diameter W1/O/W2 emulsion particles[J]. High Power Laser and Particle Beams, 2012, 24(2): 389-393.
|
11 |
Pan D W , Huang W X , Chen Q , et al . Investigation of craze and cracks of polystyrene shells during drying process[J]. Fusion Science and Technology, 2018, 73: 59-67.
|
12 |
Utada A S , Lorenceau E , Link P D , et al . Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721): 537-541.
|
13 |
Okushima S , Nisisako T , Torii T , et al . Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices[J]. Langmuir, 2004, 20(23): 9905-9908.
|
14 |
Kim S H , Kim B . Controlled formation of double-emulsion drops in sudden expansion channels[J]. Journal of Colloid and Interface Science, 2014, 415: 26-31.
|
15 |
Shang L , Cheng Y , Wang J , et al . Double emulsions from a capillary array injection microfluidic device[J]. Lab on a Chip, 2014, 14(18): 3489.
|
16 |
Liu X D , Wu L Y , Zhao Y J , et al . Study of compound drop formation in axisymmetric microfluidic devices with different geometries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 87-98.
|
17 |
Wu L Y , Liu X D , Zhao Y J , et al . Role of local geometry on droplet formation in axisymmetric microfluidics[J]. Chemical Engineering Science, 2017, 163: 56-67.
|
18 |
Umbanhowar P B , Prasad V , Weitz D A . Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351.
|
19 |
Xu J H , Li S W , Lan W J , et al . Microfluidic approach for rapid interfacial tension measurement[J]. Langmuir, 2008, 24(19): 11287-11292.
|
20 |
Gu Y , Kojima H , Miki N . Theoretical analysis of 3D emulsion droplet generation by a device using coaxial glass tubes[J]. Sensors and Actuators A: Physical, 2011, 169(2): 326-332.
|
21 |
Vu T V , Homma S , Tryggvason G , et al . Computations of breakup modes in laminar compound liquid jets in a coflowing fluid[J]. International Journal of Multiphase Flow, 2013, 49(3): 58-69.
|
22 |
Cramer C , Fischer P , Windhab E J . Dropformation in a co-flowing ambient fluid[J]. Chemical Engineering Science, 2004, 59(15): 3045-3058.
|
23 |
Thorsen T , Roberts R W , Arnold F H , et al . Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166.
|
24 |
Xu J H , Luo G S , Li S W , et al . Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties[J]. Lab on a Chip, 2006, 6(1): 131-136.
|
25 |
Che Z , Wong T N , Nguyen N T . A simple method for the formation of water-in-oil-in-water (W/O/W) double emulsions[J]. Microfluidics and Nanofluidics, 2017, 21(1): 8.
|
26 |
Iwasa Y , Yamanoi K , Kaneyasu Y , et al . Controlled generation of double emulsions for laser fusion target fabrication using a glass capillary microfluidic device[J]. Fusion Science and Technology, 2017, 73(2): 258-264.
|
27 |
陈素芬, 刘一杨, 魏胜, 等 . 毫米级单分散聚-α-甲基苯乙烯空心微球制备[J]. 强激光与粒子束, 2012, 24(11): 2647-2650.
|
|
Chen S F , Liu Y Y , Wei S , et al . Fabrication of millimeter-sized monodisperse poly(α-metylstyrene) capsules[J]. High Power Laser and Particle Beams, 2012, 24(11): 2647-2650.
|
28 |
Shao T , Feng X L , Jin Y , et al . Controlled production of double emulsions in dual-coaxial capillaries device for millimeter-scale hollow polymer spheres[J]. Chemical Engineering Science, 2013, 104(complete): 55-63.
|
29 |
陈强, 漆小波, 陈素芬, 等 . 微流控技术中双重乳粒尺寸调控规律的研究[J]. 物理学报, 2017, 66(4): 218-226.
|
|
Chen Q , Qi X B , Chen S F , et al . Controlled production of double emulsion by microfluid technique[J]. Acta Phys. Sin., 2017, 66(4): 218-226.
|
30 |
Streit J , Schroen D . Development of divinylbenzene foam shells for use as inertial fusion energy reactor targets[J]. Fusion Science and Technology, 2003, 43(3): 321-326.
|