化工学报 ›› 2019, Vol. 70 ›› Issue (3): 969-978.DOI: 10.11949/j.issn.0438-1157.20180729
田涛1(),刘冰2,石梅生1,安亚雄2,马军1,张彦军1,徐新喜1(),张东辉2()
收稿日期:
2018-07-04
修回日期:
2018-09-19
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
徐新喜,张东辉
作者简介:
<named-content content-type="corresp-name">田涛</named-content>(1979—),男,硕士,工程师,<email>wzstiantao@163.com</email>|徐新喜(1965—),男,博士,研究员,<email>xuxx1@sohu.com</email>|张东辉(1971—),男,博士,副研究员,<email>donghuizhang@tju.edu.cn</email>
基金资助:
Tao TIAN1(),Bing LIU2,Meisheng SHI1,Yaxiong AN2,Jun MA1,Yanjun ZHANG1,Xinxi XU1(),Donghui ZHANG2()
Received:
2018-07-04
Revised:
2018-09-19
Online:
2019-03-05
Published:
2019-03-05
Contact:
Xinxi XU,Donghui ZHANG
摘要:
设计一种两吸附床小型PSA制氧机,并在低压舱内模拟海拔高度对两吸附床小型PSA制氧机的影响,同时对结构参数以及操作参数的影响进行考察,建立制氧工艺流程数学模型,通过实验对比,微调模型使之与实际相符,验证模型的准确性,并开展数值仿真与模拟研究,以确定相关的内在参数及外部因素对制氧过程及制氧效果等性能指标的影响规律,得到不同海拔不同工况下,较优的设计参数和操作参数,从而提高制氧效率,降低制氧机的制造和运行成本。
中图分类号:
田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds[J]. CIESC Journal, 2019, 70(3): 969-978.
Bed | Time/s | |||||
---|---|---|---|---|---|---|
4—9 | 0.8 | 4—9 | 0.8 | |||
1 | AD | ED | PP | PUR | ER | |
2 | PP | PUR | ER | AD | ED |
表1 两塔变压吸附工艺过程时间顺序
Table 1 Schedule for two-bed PSA process
Bed | Time/s | |||||
---|---|---|---|---|---|---|
4—9 | 0.8 | 4—9 | 0.8 | |||
1 | AD | ED | PP | PUR | ER | |
2 | PP | PUR | ER | AD | ED |
Model equation | Mathematical expression | |
---|---|---|
mass balance | (1) (2) | |
energy balance gas phase solid phase bed wall | (3) | |
(4) | ||
(5) | ||
momentum balance | (6) | |
adsorption balance | (7) | |
adsorption rate | (8) | |
purity | (9) | |
recovery | (10) | |
productivity | (11) | |
valve | (12) |
表2 两塔变压吸附工艺吸附塔数学模型[29,30,31]
Table 2 Mathematical model of bed for two-bed PSA process
Model equation | Mathematical expression | |
---|---|---|
mass balance | (1) (2) | |
energy balance gas phase solid phase bed wall | (3) | |
(4) | ||
(5) | ||
momentum balance | (6) | |
adsorption balance | (7) | |
adsorption rate | (8) | |
purity | (9) | |
recovery | (10) | |
productivity | (11) | |
valve | (12) |
Parameter | Value |
---|---|
Hb/m | 0.339 |
Db/m | 0.068 |
Wt/m | 0.001 |
rp/m | 6.0× 10-4 |
ρb /(kg·m-3) | 610.0 |
kw/(W·m-1·K-1) | 17.0 |
ks/(W·m-1·K-1) | 0.30 |
kg/(W·m-1·K-1) | 0.024 |
cpw /(kJ·kg-1·K-1) | 0.502 |
cps /(kJ·kg-1·K-1) | 0.902 |
cvg /(kJ·kg-1·K-1) | 0.758 |
Hamb/(W·m-2·K-1) | 22.3 |
hw/(W·m-2·K-1) | 10.0 |
hf/(W·m-2·K-1) | 60.0 |
εb | 0.33 |
εp | 0.53 |
ρw /(kg·m-3) | 7800 |
Tamb/K | 298.15 |
表3 吸附塔和吸附剂相关参数
Table 3 Physical characteristics of adsorption bed and adsorbent
Parameter | Value |
---|---|
Hb/m | 0.339 |
Db/m | 0.068 |
Wt/m | 0.001 |
rp/m | 6.0× 10-4 |
ρb /(kg·m-3) | 610.0 |
kw/(W·m-1·K-1) | 17.0 |
ks/(W·m-1·K-1) | 0.30 |
kg/(W·m-1·K-1) | 0.024 |
cpw /(kJ·kg-1·K-1) | 0.502 |
cps /(kJ·kg-1·K-1) | 0.902 |
cvg /(kJ·kg-1·K-1) | 0.758 |
Hamb/(W·m-2·K-1) | 22.3 |
hw/(W·m-2·K-1) | 10.0 |
hf/(W·m-2·K-1) | 60.0 |
εb | 0.33 |
εp | 0.53 |
ρw /(kg·m-3) | 7800 |
Tamb/K | 298.15 |
Parameter | Ar | N2 | O2 |
---|---|---|---|
IP1/(mol·kg-1·kPa-1) | 1.16× 10-8 | 2.72× 10-9 | 1.16× 10-8 |
IP2/K | 1406 | 2465 | 1406 |
IP3/kPa-1 | 1.86× 10-6 | 1.11× 10-6 | 1.86× 10-6 |
IP4/K | 1406 | 2465 | 1406 |
ΔH/(kJ-1·mol-1) | -13.478 | -24.57 | -13.478 |
cpa/(kJ·kmol?1·K?1) | 20.8 | 29.06 | 29.09 |
表4 Langmuir吸附模型中N2/O2/Ar参数
Table 4 Parameters of Langmuir adsorption model for N2/O2/Ar
Parameter | Ar | N2 | O2 |
---|---|---|---|
IP1/(mol·kg-1·kPa-1) | 1.16× 10-8 | 2.72× 10-9 | 1.16× 10-8 |
IP2/K | 1406 | 2465 | 1406 |
IP3/kPa-1 | 1.86× 10-6 | 1.11× 10-6 | 1.86× 10-6 |
IP4/K | 1406 | 2465 | 1406 |
ΔH/(kJ-1·mol-1) | -13.478 | -24.57 | -13.478 |
cpa/(kJ·kmol?1·K?1) | 20.8 | 29.06 | 29.09 |
Step | z=0 | z=L |
---|---|---|
adsorption(AD step) | ||
equalization repressurization(ER step) | ||
equalization depressurization(ED step) | ||
PUR(product upper gas purge step) | ||
PP(purge product gas step) | ||
表5 边界条件汇总
Table 5 Summary of boundary conditions for each step
Step | z=0 | z=L |
---|---|---|
adsorption(AD step) | ||
equalization repressurization(ER step) | ||
equalization depressurization(ED step) | ||
PUR(product upper gas purge step) | ||
PP(purge product gas step) | ||
Altitude /m | Tower high/mm | Adsorption time/s | Pore size/mm | Qout/ (L·min-1) | Purity/% | Recovery/% | ||
---|---|---|---|---|---|---|---|---|
Simulation | Experiment | Simulation | Experiment | |||||
2000 | 339 | 7 | 0.9 | 5.00 | 94.86 | 94.30 | 35.73 | 35.63 |
3000 | 339 | 7 | 0.9 | 5.00 | 92.64 | 94.00 | 40.95 | 41.59 |
4000 | 339 | 7 | 0.9 | 5.00 | 86.41 | 91.85 | 45.16 | 48.20 |
5000 | 339 | 7 | 0.9 | 5.00 | 80.98 | 83.75 | 47.24 | 48.95 |
3000 | 226 | 3 | 0.9 | 5.00 | 91.22 | 90.01 | 39.04 | 38.64 |
3000 | 226 | 4 | 0.9 | 5.00 | 92.17 | 91.89 | 40.37 | 40.13 |
3000 | 226 | 5 | 0.9 | 5.00 | 93.19 | 92.35 | 41.66 | 41.41 |
3000 | 226 | 6 | 0.9 | 5.00 | 92.93 | 91.40 | 42.36 | 41.79 |
3000 | 226 | 7 | 0.9 | 5.00 | 92.24 | 89.41 | 42.97 | 41.78 |
5000 | 339 | 9 | 0.6 | 4.40 | 88.31 | 90.56 | 48.11 | 49.00 |
5000 | 339 | 9 | 0.7 | 4.40 | 89.24 | 91.57 | 48.05 | 48.97 |
5000 | 339 | 9 | 0.8 | 4.40 | 90.23 | 92.95 | 47.80 | 48.90 |
5000 | 339 | 9 | 0.9 | 4.40 | 88.72 | 93.15 | 46.21 | 48.19 |
5000 | 339 | 9 | 1.0 | 4.40 | 88.14 | 92.05 | 45.87 | 47.58 |
表6 两塔变压吸附工艺模拟与实验结果汇总
Table 6 Summary of simulation and experiment results for two-bed PSA process
Altitude /m | Tower high/mm | Adsorption time/s | Pore size/mm | Qout/ (L·min-1) | Purity/% | Recovery/% | ||
---|---|---|---|---|---|---|---|---|
Simulation | Experiment | Simulation | Experiment | |||||
2000 | 339 | 7 | 0.9 | 5.00 | 94.86 | 94.30 | 35.73 | 35.63 |
3000 | 339 | 7 | 0.9 | 5.00 | 92.64 | 94.00 | 40.95 | 41.59 |
4000 | 339 | 7 | 0.9 | 5.00 | 86.41 | 91.85 | 45.16 | 48.20 |
5000 | 339 | 7 | 0.9 | 5.00 | 80.98 | 83.75 | 47.24 | 48.95 |
3000 | 226 | 3 | 0.9 | 5.00 | 91.22 | 90.01 | 39.04 | 38.64 |
3000 | 226 | 4 | 0.9 | 5.00 | 92.17 | 91.89 | 40.37 | 40.13 |
3000 | 226 | 5 | 0.9 | 5.00 | 93.19 | 92.35 | 41.66 | 41.41 |
3000 | 226 | 6 | 0.9 | 5.00 | 92.93 | 91.40 | 42.36 | 41.79 |
3000 | 226 | 7 | 0.9 | 5.00 | 92.24 | 89.41 | 42.97 | 41.78 |
5000 | 339 | 9 | 0.6 | 4.40 | 88.31 | 90.56 | 48.11 | 49.00 |
5000 | 339 | 9 | 0.7 | 4.40 | 89.24 | 91.57 | 48.05 | 48.97 |
5000 | 339 | 9 | 0.8 | 4.40 | 90.23 | 92.95 | 47.80 | 48.90 |
5000 | 339 | 9 | 0.9 | 4.40 | 88.72 | 93.15 | 46.21 | 48.19 |
5000 | 339 | 9 | 1.0 | 4.40 | 88.14 | 92.05 | 45.87 | 47.58 |
Altitude/ km | Qout/ (L·min-1) | Purity/% | Recovery/% | (P*/F*)/% | (PO2*/FO2*)/% | (W*/F*)/% | (W*O2*/FO2*)/% | (E*/F*)/% | Composition of pressure equalization gas |
---|---|---|---|---|---|---|---|---|---|
0 | 5 | 93.4 | 34.0 | 11.74 | 52.14 | 92.35 | 65.96 | 9.48 | 81.85%N2, 17.35%O2 |
5 | 4.4 | 93.0 | 47.8 | 9.08 | 38.01 | 89.00 | 53.80 | 9.03 | 81.02%N2, 18.11%O2 |
表7 单周期内氧气物料衡算
Table 7 Material balance of O2 in CSS
Altitude/ km | Qout/ (L·min-1) | Purity/% | Recovery/% | (P*/F*)/% | (PO2*/FO2*)/% | (W*/F*)/% | (W*O2*/FO2*)/% | (E*/F*)/% | Composition of pressure equalization gas |
---|---|---|---|---|---|---|---|---|---|
0 | 5 | 93.4 | 34.0 | 11.74 | 52.14 | 92.35 | 65.96 | 9.48 | 81.85%N2, 17.35%O2 |
5 | 4.4 | 93.0 | 47.8 | 9.08 | 38.01 | 89.00 | 53.80 | 9.03 | 81.02%N2, 18.11%O2 |
1 | 卜令兵, 刘应书, 刘文海, 等. 微型变压吸附制氧与氧疗保健[J]. 低温与特气, 2005, 23(1): 5-9. |
BuL B, LiuY S, LiuW H, et al. Micro pressure adsorption oxygen therapy and oxygen therapy health care[J]. Low Temperature and Specialty Gases, 2005, 23 (1): 5-9. | |
2 | 张志刚, 姜锐, 张月胜, 等. 浅谈我国变压吸附技术的进展[J]. 气体分离, 2011, 2: 14-20. |
ZhangZ G, JiangR, ZhangY S, et al. A brief discussion on the progress of pressure swing adsorption technology in China [J]. Gas Separation, 2011, 2: 14-20. | |
3 | 杨雄. 微型变压吸附制氧机发展概况及存在的问题[J]. 气体分离, 2015, (3): 20. |
YangX. Development of micro pressure adsorption pressure adsorption oxygen making machine and its existing problems[J]. Gas Separation, 2015, (3): 20. | |
4 | 吴其蒙. 节能型小型制氧机[J]. 气体分离, 2003, (3) : 54-56. |
WuQ M. Energy saving small oxygen making machine[J]. Gas Separation, 2003, (3): 54-56. | |
5 | 活力. 小型制氧机与家庭氧疗[J]. 临床医学工程, 2001, 12: 62-63. |
HuoL. Small oxygen machine and family oxygen therapy[J]. Clinical Medical Engineering, 2001, 12: 62-63. | |
6 | 崔红社, 刘应书, 乐恺, 等. 小型变压吸附制氧过程的数值模拟[J]. 深冷技术, 2004, (1): 20-23. |
CuiH S, LiuY S, YueK, et al. Mathematical simulation of small PSA oxygen process [J]. Cryogenic Technology, 2004, (1): 20-23. | |
7 | FarooqS, RuthvenD M, BonifaceH A. Numerical simulation of a pressure swing adsorption oxygen unit[J]. Medical Equipment Journal, 1998, 44(12): 2809-2816. |
8 | TeagueK G, EdgarT F. Predictive dynamic model of a small pressure swing adsorption air separation unit[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3761-3775. |
9 | FernandezG F, KenneyC N. Modelling of the pressure swing air separation process[J]. Chemical Engineering Science, 1983, 38(6): 827-834. |
10 | FarooqS, RuthvenD M. Numerical simulation of a kinetically controlled pressure swing adsorption bulk separation process based on a diffusion model[J]. Chemical Engineering Science, 1991, 46(9): 2213-2224. |
11 | SilvaF A D, SilvaJ A, RodriguesA E. A general package for the simulation of cyclic adsorption processes[J]. Adsorption-Journal of the International Adsorption Society, 1999, 5(3): 229-244. |
12 | ChaiS W, KothareM V, SircarS. Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator[J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8703-8710. |
13 | RuthvenD M. Principles of Adsorption & Adsorption Processes[M]. New York: Wiley, 1984. |
14 | WuC W, KothareM V, SircarS. Model analysis of equilibrium adsorption isotherms of pure N2, O2, and their binary mixtures on LiLSX zeolite[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12428-12434. |
15 | RamaR V, KothareM V, SircarS. Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen[J]. Adsorption-Journal of the International Adsorption Society, 2014, 20(1): 53-60. |
16 | RamaR V, ChaiS W, KothareM V, et al. Highlights of non-equilibrium, non-isobaric, non-isothermal desorption of nitrogen from a LiX zeolite column by rapid pressure reduction and rapid purge by oxygen[J]. Adsorption-Journal of the International Adsorption Society, 2014, 20(2/3): 477-481. |
17 | RamaR V, SircarS. Comparative performance of an adiabatic and a nonadiabatic PSA process for bulk gas separation—a numerical simulation[J]. AIChE Journal, 2017, 63(9): 4066-4078. |
18 | ChaiS W, KothareM V, SircarS. Efficiency of nitrogen desorption from LiX Zeolite by rapid oxygen purge in a pancake adsorber[J]. AIChE Journal, 2013, 59(2): 365-368. |
19 | ChaiS W, KothareM V, SircarS. Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator[J]. Adsorption-Journal of the International Adsorption Society, 2012, 18(2): 87-102. |
20 | VemulaR R, KothareM V, SircarS. Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: Effect of feed air pressure[J]. AIChE Journal, 2016, 62(4): 1212-1215. |
21 | ZhuX Q, LiuY S, YangX, et al. Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen[J]. Adsorption-Journal of the International Adsorption Society, 2016, 23(1): 1-10. |
22 | 祝显强, 刘应书, 焦璐璐, 等. 快速真空变压吸附制氧的排放气充压过程研究[J]. 北京科技大学学报, 2015, 37(11): 1513-1519. |
ZhuX Q, LiuY S, JiaoL L, et al. Study on pressurization with raffinate in a rapid vacuum pressure swing adsorption process for producing oxygen [J]. Journal of University of Science and Technology Beijing, 2015, 37(11): 1513-1519. | |
23 | 祝显强, 刘应书, 杨雄, 等. 吸附及解吸压力对快速变压吸附床内速度及循环性能的影响[J]. 北京科技大学学报, 2016, 38(7): 993-1001. |
ZhuX Q, LiuY S, YangX, et al. Effect of adsorption and desorption pressure on the velocity and cycling performance of rapid pressure swing adsorption[J]. Journal of University of Science and Technology Beijing, 2016, 38(7): 993-1001. | |
24 | 杨彦钢, 丁艳宾, 马正飞, 等. 不同均压方式对PSA和VSA空分制氧过程的影响[J]. 南京工业大学学报(自科科学版), 2012, 34(4): 79-83. |
YangY G, DingY B, MaZ F, et al. Effects of different pressure equalization methods on PSA and VSA processes for O2 production from air[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2012, 34(4): 79-83. | |
25 | 周圆圆, 韦向攀, 张东辉. 三塔真空变压吸附富氧工艺过程模拟[J]. 化工进展, 2011, 30(S2): 263-267. |
ZhouY Y, WeiX P, ZhangD H. Simulation of three-bed VPSA oxygen enrichment process[J]. Chemical Industry and Engineering Progress, 2011, 30(S2): 263-267. | |
26 | KavithaT, KaliappanS. Equilibrium isotherms of methane onto activated carbons using a static volumetric method[J]. J. Environ. Sci. Eng., 2009, 51(3): 219-222. |
27 | 丁兆阳, 韩治洋, 石文荣, 等. 快速变压吸附制氧动态传质系数模拟分析[J]. 化工学报, 2018, 69(2): 759-768. |
DingZ Y, HanZ Y, ShiW R, et al. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production[J]. CIESC Journal, 2018, 69(2): 759-768. | |
28 | LiD D, ZhouY, ShenY H, et al. Experiment and simulation for separating CO2 /N2, by dual-reflux pressure swing adsorption process[J]. Chemical Engineering Journal, 2016, 297: 315-324. |
29 | 周言, 沈圆辉, 付强, 等. 真空变压吸附分离CH4/N2/O2实验、模拟与安评[J]. 化工学报, 2017, 68(2): 723-731. |
ZhouY, ShenY H, FuQ, et al. Experiment, simulation and safety evaluation of vacuum pressure swing adsorption for CH4/N2/O2 separation[J]. CIESC Journal, 2017, 68(2): 723-731. | |
30 | YangH W, YinC B, JiangB, et al. Optimization and analysis of a VPSA process for N2/CH4, separation[J]. Separation & Purification Technology, 2014, 134(1): 232-240. |
31 | BrandaniF, RouseA, BrandaniS, et al. Adsorption kinetics and dynamic behavior of a carbon monolith[J]. Adsorption-Journal of the International Adsorption Society, 2004, 10(2): 99-109. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[7] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[8] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[9] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[10] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||