化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2503-2511.DOI: 10.11949/0438-1157.20190171
黄明1,2(),康俊阳1,吴昕哲1,石宪章1(),刘永志1,曹伟1,刘春太1
收稿日期:
2019-03-01
修回日期:
2019-04-29
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
石宪章
作者简介:
黄明(1978—),男,博士,副教授,<email>huangming@zzu.edu.cn</email>
基金资助:
Ming HUANG1,2(),Junyang KANG1,Xinzhe WU1,Xianzhang SHI1(),Yongzhi LIU1,Wei CAO1,Chuntai LIU1
Received:
2019-03-01
Revised:
2019-04-29
Online:
2019-07-05
Published:
2019-07-05
Contact:
Xianzhang SHI
摘要:
与玻璃制造光学制品相比,高分子注塑光学制品具有质量轻、易加工、抗冲击性好等优点,在航空航天、精密透镜等高端领域得到广泛应用。然而受注塑过程复杂压力场、温度场的耦合作用,注塑透明制品折射率通常呈非均匀的分布,存在角偏差、光畸变等光学缺陷。因此,开展注塑工艺对其折射行为影响的模拟与实验研究,对实现折射率可控光学制品的成型具有重要意义。基于Hele Shaw注塑理论和Lorentz Lorenz物理光学理论,构建了注塑光学制品厚度方向折射行为分层预测模型,开发了相关模拟程序,基于自主研发的注塑模软件Z-Mold实现了注塑过程与折射率分布的一体化模拟。以聚碳酸酯注塑平板件为例,利用Brewster法对折射率模拟结果进行了验证。该方法成功应用到神舟系列航天舱外服面窗的研制。
中图分类号:
黄明, 康俊阳, 吴昕哲, 石宪章, 刘永志, 曹伟, 刘春太. 注塑成型光学制品折射率分层模拟与实验研究[J]. 化工学报, 2019, 70(7): 2503-2511.
Ming HUANG, Junyang KANG, Xinzhe WU, Xianzhang SHI, Yongzhi LIU, Wei CAO, Chuntai LIU. Layered simulation in thickness direction and experimental study on refractive index of injection molded optical products[J]. CIESC Journal, 2019, 70(7): 2503-2511.
Density/(kg·m-3) | Thermal conductivity /(W·m-1·K-1) | Specific heat /(J·kg-1·K-1) | Transition temperature/K |
---|---|---|---|
1045.6 | 0.23 | 1881 | 417 |
表1 PC性能参数
Table 1 PC performance parameters
Density/(kg·m-3) | Thermal conductivity /(W·m-1·K-1) | Specific heat /(J·kg-1·K-1) | Transition temperature/K |
---|---|---|---|
1045.6 | 0.23 | 1881 | 417 |
Distance from injection gate/mm | Brewster angle/(°) | Measured value | Simulated value |
---|---|---|---|
10 | 58.05 | 1.6034 | 1.6000 |
25 | 57.89 | 1.5935 | 1.5914 |
40 | 57.97 | 1.5985 | 1.5903 |
55 | 57.97 | 1.5985 | 1.5890 |
70 | 58.11 | 1.6072 | 1.5953 |
表2 折射率测量值与模拟值对比
Table 2 Comparison of measured refractive index with simulated values
Distance from injection gate/mm | Brewster angle/(°) | Measured value | Simulated value |
---|---|---|---|
10 | 58.05 | 1.6034 | 1.6000 |
25 | 57.89 | 1.5935 | 1.5914 |
40 | 57.97 | 1.5985 | 1.5903 |
55 | 57.97 | 1.5985 | 1.5890 |
70 | 58.11 | 1.6072 | 1.5953 |
1 | YiA Y, TaoB, KlockeF, et al. Residual stresses in glass after molding and its influence on optical properties[J]. Procedia Engineering, 2011, 19(1): 402-406. |
2 | 朱勤勤, 封麟先. 光学用透明高分子材料[J]. 高分子材料科学与工程, 1995, (5): 1-6. |
ZhuQ Q, FengL X. Optical transparent polymer materials[J]. Polymer Materials Science and Engineering, 1995, (5): 1-6. | |
3 | 官建国, 袁润章. 光学透明材料的现状和研究进展(Ⅰ):光学透明高分子材料[J]. 武汉工业大学学报, 1998, (2): 11-13. |
GuanJ G, YuanR Z. The present situation and development of optically transparent materials (I): Optically transparent polymers[J]. Journal of Wuhan University of Technology, 1998, (2): 11-13. | |
4 | MichaeliW, KlaiberF, ForsterJ. Geometrical accuracy and optical performance of injection moulded and injection-compression moulded plastic parts[J]. Manufacturing Technology, 2007, 56(1): 545-548. |
5 | JhaG S, SeshadriG, MohanA, et al. Development of high refractive index plastics[J]. Polymers, 2007, 7: 1384-1408. |
6 | Pina-EstanyJ, García-GranadabA A, Corull-MassanaaE. Injection moulding of plastic parts with laser textured surfaces with optical applications[J]. Optical Materials, 2018, 79:372-380. |
7 | YanagishitaT, MasuiM, IkegawaN, et al. Fabrication of polymer antireflection structures by injection molding using ordered anodic porous alumina mold[J]. Journal of Vacuum Science & Technology B, 2014, 32(2): 021809-021809-5. |
8 | WangC F, HuangM, ShenC Y, et al. Warpage prediction of the injection-molded strip-like plastic parts[J]. Chinese Journal of Chemical Engineering, 2016, 24(5): 665-670. |
9 | SpinaR, WalachP, SchildJ, et al. Analysis of lens manufacturing with injection molding[J]. International Journal of Precision Engineering & Manufacturing, 2012, 13(11): 2087-2095. |
10 | HuangC. Investigation of injection molding process for high precision polymer lens manufacturing[D]. Ohio: The Ohio State University, 2008. |
11 | AfzalM A F, HachmannJ. Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers[J]. Physical Chemistry Chemical Physics, 2019, 21(8): 4452-4460. |
12 | AfzalM A F, ChengC, HachmannJ. Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers[J]. Journal of Chemical Physics, 2018, 148(24): 241712-241712-8. |
13 | 李海梅, 姜坤, 徐文莉, 等. 工艺条件对透明光学制品性能的影响[J]. 中国机械工程, 2006, (S1): 157-160. |
LiH M, JiangK, XuW L, et al. Effects of process parameters on optical properties of injection molded parts[J]. China Mechanical Engineering, 2006, (S1): 157-160. | |
14 | 王鑫, 李海梅, 杜林芳. 模具结构和熔体温度对PC透明制品性能的影响[J]. 工程塑料应用, 2008, 36(1): 27-30. |
WangX, LiH M, DuL F. Influence of mold structure and melt temperature on performance of PC transparent injection molded parts[J]. Engineering Plastics Application, 2008, 36(1): 27-30. | |
15 | 曹国荣, 王克俭. 注塑工艺对聚碳酸酯曲面透光件光学角偏差的影响[J]. 中国塑料, 2015, 29(11): 87-91. |
CaoG R, WangK J. Effect of injection molding process on angular deviation of curved transparent polycarbonate parts[J]. China Plastics, 2015, 29(11): 87-91. | |
16 | 陈宇宏, 袁渊, 张宜生, 等. 基于光学畸变要求的注射成型透明平板应力翘曲分析[J]. 航空材料学报, 2008, 28(6): 82-87. |
ChenY H, YuanY, ZhangY S, et al. Residual stresses, warpage and shrinkage analysis of injection molded transparent panel based on optical distortion[J]. Journal of Aeronautical Materials, 2008, 28(6): 82-87. | |
17 | AvraamI I, Tsui-HsunL. Frozen-in birefringence and anisotropic shrinkage in optical moldings(Ⅰ): Theory and simulation scheme[J]. Polymer, 2010, 51(1): 316-327. |
18 | AvraamI I, Tsui-HsunL, KeehaeK. Frozen-in birefringence and anisotropic shrinkage in optical moldings(Ⅱ): Comparison of simulations with experiments on light-guide plates[J]. Polymer, 2010, 51(23): 5623-5639. |
19 | YangS S, TaiH K. A study of birefringence, residual stress and final shrinkage for precision injection molded parts[J]. Korea-Australia Rheology Journal, 2007, 19(4): 191-199. |
20 | ParkK, JooW. Numerical evaluation of a plastic lens by coupling injection molding analysis with optical simulation[J]. Japanese Journal of Applied Physics, 2008, 47(11): 8402-8407. |
21 | YangC, SuL J, HuangC N, et al. Effect of packing pressure on refractive index variation in injection molding of precision plastic optical lens[J]. Advances in Polymer Technology, 2011, 30(1): 51-61. |
22 | BensinghR J, MachavaramR, BoopathyS R, et al. Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO) [J]. Measurement, 2019, 134: 359-374. |
23 | LiL, RaaschT W, YiA Y. Simulation and measurement of optical aberrations of injection molded progressive addition lenses[J]. Applied Optics, 2013, 52(24): 6022-6029. |
24 | AdhikariA, BourgadeT, AsundiA. Residual stress measurement for injection molded components[J]. Theoretical and Applied Mechanics Letters, 2016, 6(4): 152-156. |
25 | 李金仓. 注射成型聚碳酸酯制品透光性能模拟与实验研究[D]. 河南: 郑州大学, 2016. |
LiJ C. Simulation and experimental study on light transmittance of injection molded polycarbonate products[D]. Henan: Zhengzhou University, 2016. | |
26 | 黄明, 石宪章, 刘春太, 等. 基于统一网格的塑件成型与模具结构一体化分析[J]. 化工学报, 2012, 63(8): 2617-2622. |
HuangM, ShiX Z, LiuC T, et al. Integrated analysis of part molding and mold structural mechanics based on identical mesh[J]. CIESC Journal, 2012, 63(8): 2617-2622. | |
27 | 王超房, 黄明, 石宪章, 等. 注塑成型Hele-Shaw流动模拟中热对流的异步长求解[J]. 化工学报, 2016, 67(7): 3047-3054. |
WangC F, HuangM, ShiX Z, et al. Thermal convection calculation with variable time step in Hele-Shaw flow simulation of injection molding[J]. CIESC Journal, 2016, 67(7): 3047-3054. | |
28 | ChiangH H, HieberC A, WangK K. A unified simulation of the filling and postfilling stages in injection molding(I): Formulation[J]. Polymer Engineering & Science, 1991, 31(2): 116-124. |
29 | KrishnaswamyR K, JanzenJ. Exploiting refractometry to estimate the density of polyethylene: the Lorentz–Lorenz approach re-visited[J]. Polymer Testing, 2005, 24(6): 762-765. |
30 | 陈方平, 祁铮. Brewster角的测量方法[J]. 物理实验, 2012, 32(11): 41-43. |
ChenF P, QiZ. Measurement method of Brewster angle[J]. Physics Experimentation, 2012, 32(11): 41-43. | |
31 | 王中林. 基于Brewster定律的分光仪测量玻璃折射率实验[J]. 大学物理实验, 2012, 25(3): 55-57. |
WangZ L. Spectrometer measuring the refractive index of glass experiment based on Brewster s law[J]. Physical Experiment of College, 2012, 25(3): 55-57. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[9] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[10] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[11] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[14] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||