化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4445-4461.DOI: 10.11949/0438-1157.20200739
收稿日期:
2020-06-11
修回日期:
2020-07-14
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
魏子栋
作者简介:
郑星群(1993—),女,博士研究生,基金资助:
Xingqun ZHENG(),Li LI(),Zidong WEI()
Received:
2020-06-11
Revised:
2020-07-14
Online:
2020-10-05
Published:
2020-10-05
Contact:
Zidong WEI
摘要:
电催化剂是化学能转化过程中电化学反应的核心,最大程度地提升其催化性能,对提高电催化效率、节能降耗具有重要意义。如何确保催化剂活性中心在物质(包括电子)的传输通道交汇处,调控活性并同步提升其稳定性与导电性,是设计与优化电催化剂并实现其性能最大化的关键。在催化剂的构筑与制备中,表界面结构、组成与性质等的变化往往呈现非线性关系,即介于两极端情况的介尺度区域内会出现性质的突变,表现出介尺度性质。基于此,从“介尺度”的视角,总结了近年来在催化剂表界面活性位构筑与调控中存在的介尺度现象与对应策略,从晶体结构、化学组分、相界面以及应变效应等对催化剂结构以及性能的调变几个方面进行分析梳理,进一步指出:介尺度思想可以指导电催化剂的设计,为制备高性能电催化剂提供了新的思路和视角。
中图分类号:
郑星群, 李莉, 魏子栋. 介尺度视角下的电催化剂调控策略[J]. 化工学报, 2020, 71(10): 4445-4461.
Xingqun ZHENG, Li LI, Zidong WEI. Constructing and regulating electrocatalysts: from perspective of mesoscale[J]. CIESC Journal, 2020, 71(10): 4445-4461.
1 | Chen J, Wang F, Qi X, et al. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions[J]. Electrochimica Acta, 2019, 3326(5):134979-134986. |
2 | Dou S, Wang X, Wang S Y. Rational design of transition metal-based materials for highly efficient electrocatalysis[J]. Small Methods, 2019, 3(1): 1800211-1800228. |
3 | Gao Q, Zhang W, Shi Z, et al. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution[J]. Adv. Mater., 2019, 31(2): e1802880. |
4 | Hu Q, Li G, Han Z, et al. Nonmetal doping as a robust route for boosting the hydrogen evolution of metal-based electrocatalysts[J]. Chem. Eur. J., 2020, 26(18): 3930-3942. |
5 | Zhao Z J, Liu S H, Zha S J, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors[J]. Nature Reviews Materials, 2019, 4(12): 792-804. |
6 | Kusada K, Kobayashi H, Yamamoto T, et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method[J]. J. Am. Chem. Soc., 2013, 135(15): 5493-5496. |
7 | Wang C, Wang Y, Yang H, et al. Revealing the role of electrocatalyst crystal structure on oxygen evolution reaction with nickel as an example[J]. Small, 2018, 14(40): 1802895-1802902. |
8 | Wang C, Yang H, Zhang Y, et al. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(18): 6099-6103. |
9 | Tong W, Huang B, Wang P, et al. Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(7): 2649-2653. |
10 | Meng Y, Song W, Huang H, et al. Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J. Am. Chem. Soc., 2014, 136(32): 11452-11464. |
11 | Yang W, Su Z A, Xu Z, et al. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Appl. Catal. B, 2020, 260: 118150. |
12 | Chen P, Xu K, Tao S, et al. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium[J]. Adv. Mater., 2016, 28(34): 7527-7532. |
13 | Strickler A L, Higgins D, Jaramillo T F. Crystalline strontium iridate particle catalysts for enhanced oxygen evolution in acid[J]. ACS Appl. Energy Mater., 2019, 2(8): 5490-5498. |
14 | Zhao Q, Yan Z, Chen C, et al. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chem. Rev., 2017, 117(15): 10121-10211. |
15 | Wu G, Wang J, Ding W, et al. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(4): 1340-1344. |
16 | 杨娜, 王俊, 吴光平, 等. 尖晶石结构反转提高氧还原催化活性的密度泛函研究[J]. 中国科学 : 化学, 2017, 47(7): 882-890. |
Yang N, Wang J, Wu G P, et al. Density functional theoretical study on the effect of spinel structure reversal on the catalytic activity for oxygen reduction reaction[J]. Scientia Sinica Chimica, 2017, 47(7): 882-890 | |
17 | Gong Y, Ding W, Li Z, et al. Inverse spinel cobalt-iron oxide and N-doped graphene composite as an efficient and durable bifuctional catalyst for Li-O2 batteries[J]. ACS Catal., 2018, 8(5): 4082-4090. |
18 | Cheng F, Shen J, Peng B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat. Chem., 2011, 3(1): 79-84. |
19 | Cheng F, Zhang T, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew. Chem. Int. Ed. Engl., 2013, 52(9): 2474-2477. |
20 | Zhang T, Cheng F, Du J, et al. Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation[J]. Adv. Energy Mater., 2015, 5(1): 1400654. |
21 | Wei Z D, Huang W Z, Zhang S T, et al. Induced effect of Mn3O4 on formation of MnO2 crystals favourable to catalysis of oxygen reduction[J]. J. Appl. Electrochem., 2000, 30(10): 1133-1136. |
22 | Wei Z D, Huang W Z, Zhang S T, et al. Carbon-based air electrodes carrying MnO2 in zinc-air batteries[J]. J. Power Sources, 2000, 91(2): 83-85. |
23 | Li L, Feng X H, Nie Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catal., 2015, 5(8): 4825-4832. |
24 | Jiang M, Fu C, Yang J, et al. Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries[J]. Energy Sto. Mater., 2019, 18: 34-42. |
25 | Peng S, Han X, Li L, et al. Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries[J]. Adv. Ener. Mater., 2018, 8(22): 1800612. |
26 | Hu C, Wang X, Yao T, et al. Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B‐site metal cation in NdNiO3[J]. Adv. Funct. Mater., 2019, 29(30): 1902449. |
27 | Li K, Zhang R, Gao R, et al. Metal-defected spinel MnxCo3-xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction[J]. Appl. Cataly. B, 2019, 244: 536-545. |
28 | Yan L, Lin Y, Yu X, et al. La0.8Sr0.2MnO3-based perovskite nanoparticles with the A-site deficiency as high performance bifunctional oxygen catalyst in alkaline solution[J]. ACS Appl. Mater. Interfaces, 2017, 9(28): 23820-23827. |
29 | Li C, Han X, Cheng F, et al. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis[J]. Nat. Commun., 2015, 6: 7345-7352. |
30 | Xu X, Li L, Huang J, et al. Engineering Ni3+ cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation[J]. ACS Catal., 2018, 8(9): 8033-8045. |
31 | Zhou W, Cao X, Zeng Z, et al. One-step synthesis of Ni3S2 nanorod@ Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors[J]. Ener. Envir. Sci., 2013, 6(7): 2216-2221. |
32 | Enman L J, Burke M S, Batchellor A S, et al. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy) hydroxide in alkaline media[J]. ACS Catal., 2016, 6(4): 2416-2423. |
33 | Peng L S, Wang J, Nie Y, et al. Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts[J]. ACS Catal., 2017, 7(12): 8184-8191. |
34 | Lai Z, Chaturvedi A, Wang Y, et al. Preparation of 1T'-phase ReS2xSe2(1-x) ( x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(27): 8563-8568. |
35 | Najam T, Shah S S A, Ding W, et al. An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(46): 15101-15106. |
36 | Xiang R, Peng L, Wei Z. Tuning interfacial structures for better catalysis of water electrolysis[J]. Chem. Eur. J., 2019, 25(42): 9799-9815. |
37 | Xie X H, Song M, Wang L G, et al. Electrocatalytic hydrogen evolution in neutral pH solutions: dual-phase synergy[J]. ACS Catal., 2019, 9(9): 8712-8718. |
38 | Yang L, Liu R M, Jiao L F. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting[J]. Adv. Funct. Mater., 2020, 30(14): 1909618. |
39 | Xiang R, Duan Y, Peng L, et al. Three-dimensional core@shell Co@CoMoO4 nanowire arrays as efficient alkaline hydrogen evolution electro-catalysts[J]. Appl. Catal. B, 2019, 246: 41-49. |
40 | Yu Z Y, Duan Y, Gao M R, et al. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting[J]. Chem. Sci., 2017, 8(2): 968-973. |
41 | Ometto F B, Carbonio E A, Teixeira-Neto E, et al. Changes induced by transition metal oxides in Pt nanoparticles unveil the effects of electronic properties on oxygen reduction activity[J]. J. Mater. Chem. A, 2019, 7(5): 2075-2086. |
42 | Wang Y, Liu S, Pei C, et al. Modulating the surface defects of titanium oxides and consequent reactivity of Pt catalysts[J]. Chem. Sci., 2019, 10(45): 10531-10536. |
43 | Liu Z, Li Z, Li J, et al. Engineering of Ru/Ru2P interfaces superior to Pt active sites for catalysis of the alkaline hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(10): 5621-5625. |
44 | Wang J, Mao S, Liu Z, et al. Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7139-7147. |
45 | Peng L S, Zheng X Q, Li L, et al. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction[J]. Appl. Cataly. B, 2019, 245: 122-129. |
46 | Zhao L, Zhang Y, Zhao Z, et al. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces[J]. Nat. Sci. Rev., 2019, 7(1): 27-36. |
47 | Jiang J, Tao S, He Q, et al. Interphase-oxidized ruthenium metal with half-filled d-orbitals for hydrogen oxidation in an alkaline solution[J]. J. Mater. Chem. A, 2020, 8(20): 10168-10174. |
48 | Yang Y, Sun X, Han G, et al. Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal-organic framework[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(31): 10644-10649. |
49 | Zhou Y, Xie Z, Jiang J, et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nat. Catal., 2020, 3(5): 454-462. |
50 | Peng L S, Shen J J, Zheng X Q, et al. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting[J]. J. Catal., 2019, 369: 345-351. |
51 | Peng L, Liao M, Zheng X, et al. Accelerated alkaline hydrogen evolution on M(OH): x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps[J]. Chem. Sci., 2020, 11(9): 2487-2493. |
52 | Han H, Choi H, Mhin S, et al. Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation[J]. Ener. Envir. Sci., 2019, 12(8): 2443-2454. |
53 | Jiang H, Lin Y, Chen B, et al. Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis[J]. Materials Today, 2018, 21(6): 602-610. |
54 | Li X C, She F S, Shen D, et al. Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction[J]. RSC Advances, 2018, 8(50): 28625-28631. |
55 | Jennings P C, Lysgaard S, Hansen H A, et al. Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis[J]. Phys. Chem. Chem. Phys., 2016, 18(35): 24737-24745. |
56 | Liu F, Wu C, Yang S. Strain and ligand effects on CO2 reduction reactions over Cu-metal heterostructure catalysts[J]. J. Phy. Chem. C, 2017, 121(40): 22139-22146. |
57 | Luo M C, Guo S J. Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nat. Rev. Mater., 2017, 2(11): 17059. |
58 | Xia Z, Guo S. Strain engineering of metal-based nanomaterials for energy electrocatalysis[J]. Chem. Soc. Rev., 2019, 48(12): 3265-3278. |
59 | Wang X S, Zhu Y H, Vasileff A, et al. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1198-1204. |
60 | Yang S, Liu F, Wu C, et al. Tuning surface properties of low dimensional materials via strain engineering[J]. Small, 2016, 12(30): 4028-4047. |
61 | Mavrikakis M, Hammer B, Norskov J K. Effect of strain on the reactivity of metal surfaces[J]. Phys. Rev. Lett., 1998, 81(13): 2819-2822. |
62 | Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497. |
63 | Shao M, Chang Q, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016, 116(6): 3594-3657. |
64 | Kattel S, Wang G. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface[J]. J. Chem. Phys., 2014, 141(12): 124713. |
65 | Moseley P, Curtin W A. Computational design of strain in core-shell nanoparticles for optimizing catalytic activity[J]. Nano Lett., 2015, 15(6): 4089-4095. |
66 | Li M, Zhao Z, Cheng T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419. |
67 | Du M, Cui L, Cao Y, et al. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate[J]. J. Am. Chem. Soc., 2015, 137(23): 7397-7403. |
68 | Wang H, Xu S, Tsai C, et al. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 2016, 354(6315): 1031-1036. |
69 | Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016, 354(6318): 1410-1414. |
70 | Sakong S, Gross A. Dissociative adsorption of hydrogen on strained Cu surfaces[J]. Surf. Sci., 2003, 525(1/2/3): 107-118. |
71 | Liu F Z, Wu C, Yang G, et al. CO oxidation over strained Pt(100) surface: a DFT study[J]. J. Phy. Chem. C, 2015, 119(27): 15500-15505. |
72 | Ghosh T, Vukmirovic M B, DiSalvo F J, et al. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties[J]. J. Am. Chem. Soc., 2010, 132(3): 906-907. |
73 | Zhang X, Lu G. Computational design of core/shell nanoparticles for oxygen reduction reactions[J]. J. Phys. Chem. Lett., 2014, 5(2): 292-297. |
74 | Back S, Jung Y. Importance of ligand effects breaking the scaling relation for core-shell oxygen reduction catalysts[J]. Chemcatchem, 2017, 9(16): 3173-3179. |
75 | Jansonius R P, Schauer P A, Dvorak D J, et al. Strain influences the hydrogen evolution activity and absorption capacity of palladium[J]. Angew. Chem. Int. Ed. Engl., 2020, 59:12192–12198 |
76 | Zheng X, Li L, Li J, et al. Intrinsic effects of strain on low-index surfaces of platinum: roles of the five 5d orbitals[J]. Phys. Chem. Chem. Phys., 2019, 21(6): 3242-3249. |
77 | Wexler R B, Martirez J M P, Rappe A M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning[J]. J. Am. Chem. Soc., 2018, 140(13): 4678-4683. |
78 | Wang X P, Wu H J, Xi S B, et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting[J]. Ener. Envir. Sci., 2020, 13(1): 229-237. |
79 | Liu X, Zhang L, Zheng Y, et al. Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films[J]. Adv. Sci. (Weinh), 2019, 6(6): 1801898. |
80 | Xie Y, Wang Z W, Zhu T Y, et al. Breaking the scaling relations for oxygen reduction reaction on nitrogen-doped graphene by tensile strain[J]. Carbon, 2018, 139: 129-136. |
81 | Wang X, Orikasa Y, Takesue Y, et al. Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction[J]. J. Am. Chem. Soc., 2013, 135(16): 5938-5941. |
82 | Zheng X Q, Peng L S, Li L, et al. Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction [J]. Chem. Sci., 2018, 9(7): 1822-1830. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[3] | 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
[4] | 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611. |
[5] | 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621. |
[6] | 牛犁, 刘梦溪, 王海北. 密相流化床中介尺度流动结构的流体力学特性研究[J]. 化工学报, 2022, 73(6): 2622-2635. |
[7] | 曹健, 叶南南, 蒋管聪, 覃瑶, 王士博, 朱家华, 陆小华. 基于微量热法对多孔碳与双氧水相互作用过程的传质阻力分析[J]. 化工学报, 2022, 73(6): 2543-2551. |
[8] | 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513. |
[9] | 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437. |
[10] | 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380. |
[11] | 曾欣欣, 白慧娟, 俞娟, 黄培, 杨超, 徐俊波. 面向空天动力用聚酰亚胺树脂基复合材料介尺度结构与调控[J]. 化工学报, 2022, 73(6): 2352-2369. |
[12] | 汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333. |
[13] | 潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317. |
[14] | 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305. |
[15] | 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||