化工学报 ›› 2020, Vol. 71 ›› Issue (11): 4885-4902.DOI: 10.11949/0438-1157.20200305
收稿日期:
2020-03-23
修回日期:
2020-06-24
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
王志
作者简介:
杜娇(1995—),女,硕士研究生,基金资助:
Jiao DU(),Zhi WANG(),Xu LI,Jixiao WANG
Received:
2020-03-23
Revised:
2020-06-24
Online:
2020-11-05
Published:
2020-11-05
Contact:
Zhi WANG
摘要:
反渗透(RO)膜分离技术由于具有高效、低耗和产水水质高等优点,已成为现阶段解决水资源短缺的有效手段。进一步提高RO膜的选择透过性能有利于降低产水成本和提高产水质量,因此制备高选择透过性能的RO膜一直是膜领域研究的重点。从优化界面聚合工艺、优化基膜及开发新型制膜工艺三方面对近年来改善RO膜选择透过性能的研究进行了综述。通过优化界面聚合工艺和开发新型制膜工艺可以直接改变分离层的结构和性质,通过调节基膜的孔径、孔隙率及亲疏水性可以影响分离层的结构,从而改善RO膜的性能。最后对制备高选择透过性能的反渗透膜的研究方向与发展前景进行了总结与展望。
中图分类号:
杜娇,王志,李旭,王纪孝. 优化聚酰胺分离层制备高选择透过性反渗透膜[J]. 化工学报, 2020, 71(11): 4885-4902.
Jiao DU,Zhi WANG,Xu LI,Jixiao WANG. Optimization of polyamide selective layer for preparation of high permselectivity reverse osmosis membranes[J]. CIESC Journal, 2020, 71(11): 4885-4902.
添加剂的类型 | 优点 | 缺点 | 具体的物质 |
---|---|---|---|
共溶剂 | 增大两相单体的混溶性,促进水相单体在有机相中的扩散,增加反应区单体的浓度,加快自抑制作用的发生,形成薄的分离层,提高膜的通量 | 反应太剧烈,导致形成的分离层的粗糙度增加,混溶性增加,导致酰氯水解,膜交联程度降低,对盐的截留率降低。部分共溶剂与基膜接触时,可能会影响基膜的形态和结构 | 木糖醇[ |
表面活性剂 | 降低水相溶液界面张力,使其铺展均匀,增加水相溶液在基膜上的存量,生成完整致密分离层。会在膜表面形成半胶束,使膜表面的电荷性更负,提高负电荷离子的截留率 | 对膜性能的提升幅度有限,需要精确控制表面活性剂浓度,超过其临界胶束浓度会降低膜选择性能 | 十二烷基硫酸钠(SDS)[ |
质子接收剂 | 吸收反应过程中产生的副产物盐酸,促进反应进行,使两相单体的反应更加完全 | 添加过量质子接收剂会促进TMC上的酰氯基团水解,导致分离层的交联度差,盐截留率降低 | NaHCO3[ |
亲水性物质 | 增加膜的亲水性,提高膜的透过性能与抗污染性能 | 一些亲水性物质上含有可与单体反应的基团,会破坏两相单体的反应和膜结构,形成有缺陷的分离层,降低盐的截留率 | CaCl2[ |
表1 反渗透膜中常用添加剂的类型及优缺点
Table 1 Types and advantages and disadvantages of commonly used additives in RO membranes
添加剂的类型 | 优点 | 缺点 | 具体的物质 |
---|---|---|---|
共溶剂 | 增大两相单体的混溶性,促进水相单体在有机相中的扩散,增加反应区单体的浓度,加快自抑制作用的发生,形成薄的分离层,提高膜的通量 | 反应太剧烈,导致形成的分离层的粗糙度增加,混溶性增加,导致酰氯水解,膜交联程度降低,对盐的截留率降低。部分共溶剂与基膜接触时,可能会影响基膜的形态和结构 | 木糖醇[ |
表面活性剂 | 降低水相溶液界面张力,使其铺展均匀,增加水相溶液在基膜上的存量,生成完整致密分离层。会在膜表面形成半胶束,使膜表面的电荷性更负,提高负电荷离子的截留率 | 对膜性能的提升幅度有限,需要精确控制表面活性剂浓度,超过其临界胶束浓度会降低膜选择性能 | 十二烷基硫酸钠(SDS)[ |
质子接收剂 | 吸收反应过程中产生的副产物盐酸,促进反应进行,使两相单体的反应更加完全 | 添加过量质子接收剂会促进TMC上的酰氯基团水解,导致分离层的交联度差,盐截留率降低 | NaHCO3[ |
亲水性物质 | 增加膜的亲水性,提高膜的透过性能与抗污染性能 | 一些亲水性物质上含有可与单体反应的基团,会破坏两相单体的反应和膜结构,形成有缺陷的分离层,降低盐的截留率 | CaCl2[ |
添加剂的类型 | 具体的材料 | 测试条件 | 通量/(L·?m-2·h-1) | NaCl 截留率/% | 文献 |
---|---|---|---|---|---|
碳基纳米材料 | 氧化石墨烯 | 15 bar,2 g/L NaCl | 17.04 | ≥97 | [ |
氧化多壁碳纳米管 | 15 bar,2 g/L NaCl | 28.9 | ≥96 | [ | |
氧化石墨烯纳米片 | 20.7 bar,2 g/L NaCl | 47.61 | 97 | [ | |
还原性氧化石墨烯 | 15 bar,2 g/L NaCl | 51 | 99.5 | [ | |
氮掺杂的氧化石墨烯量子点 | 15 bar,2 g/L NaCl | 24.9 | 93 | [ | |
纳米碳点 | 15.5 bar,2 g/L NaCl | 87.1 | 98.8 | [ | |
碳纳米管 | 7 bar,2 g/L NaCl | 6.0 | 96 | [ | |
多壁碳纳米管 | 15 bar,2 g/L NaCl | 16.95 | >96 | [ | |
两性离子官能化的碳纳米管 | 24.1 bar,2 g/L NaCl | 34.7 | 98.3 | [ | |
水通道蛋白 | AQPZ-DOPC | 5 bar,0.5 g/L NaCl | 40 | 97.5 | [ |
AQPZ-DOPC | 10 bar,1 g/L NaCl | 4.1 | 97.2 | [ | |
AQPZ-DOPC/DOTAP | 4 bar,0.5 g/L NaCl | 5.5 | 75 | [ | |
MOF | ZIF-8 | 15 bar,2 g/L NaCl | 25.5 | 99.4 | [ |
MIL-101(Cr) | 10 bar,2 g/L NaCl | 32 | 99 | [ | |
沸石 | NaY | 15.5 bar,2 g/L NaCl | 42.72 | 98.8 | [ |
等离子处理的天然沸石 | 15 bar,16 g/L NaCl | 39 | 97.12 | [ | |
NaA沸石 | 13.9 bar,0.37 g/L NaCl | 53 | 97.9 | [ | |
LTL | 10.2 bar,2 g/L NaCl | 80.2 | 93,7 | [ | |
金属及其氧化物 | ZnO-NH2 | 20.7 bar,2 g/L NaCl | 31.42 | 96.3 | [ |
CuO | 20.7 bar,1 g/L NaCl | 45.2 | 97.4 | [ | |
TiO2 | 15 bar,2 g/L NaCl | 24.3 | >97 | [ | |
ZnO/Al | 15.5 bar,2 g/L NaCl | 32 | 96-98 | [ | |
其他 | 纤维素纳米晶体 | 17 bar,2 g/L NaCl | 11.44 | 97.8 | [ |
SiO2纳米颗粒 | 10 bar,2g/L NaCl | 60 | 96.5 | [ | |
SiO2纳米颗粒 | 15 bar,2 g/L NaCl | 20 | 87 | [ | |
埃洛石纳米管 | 20 bar,3 g/L NaCl | 49.6 | 99.1 | [ | |
NH2-TNTs | 15 bar,2 g/L NaCl | 57.9 | 96.53 | [ | |
MCM-48 NPs | 16 bar,2 g/L NaCl | 23.04 | 95 | [ | |
POSS | 15.5 bar,2 g/L NaCl | 20 | 98 | [ | |
蒙脱石 | 16 bar,2 g/L NaCl | 51.7 | 99 | [ | |
层状氢氧化物 | 16 bar,2 g/L NaCl | 41.7 | 99.3 | [ | |
聚合物囊泡 | 35 bar,32 g/L NaCl | 20 | 98.9 | [ | |
硅纳米颗粒 | 44 bar,11g/L NaCl | 49 | 95 | [ | |
两性胶体纳米颗粒 | 15 bar,2 g/L NaCl | 37.3 | >96.5 | [ |
表2 反渗透膜中常见的纳米材料及用其制备的TFN RO膜的性能
Table 2 Common nanomaterials in reverse osmosis membranes and performance of the TFN RO membranes
添加剂的类型 | 具体的材料 | 测试条件 | 通量/(L·?m-2·h-1) | NaCl 截留率/% | 文献 |
---|---|---|---|---|---|
碳基纳米材料 | 氧化石墨烯 | 15 bar,2 g/L NaCl | 17.04 | ≥97 | [ |
氧化多壁碳纳米管 | 15 bar,2 g/L NaCl | 28.9 | ≥96 | [ | |
氧化石墨烯纳米片 | 20.7 bar,2 g/L NaCl | 47.61 | 97 | [ | |
还原性氧化石墨烯 | 15 bar,2 g/L NaCl | 51 | 99.5 | [ | |
氮掺杂的氧化石墨烯量子点 | 15 bar,2 g/L NaCl | 24.9 | 93 | [ | |
纳米碳点 | 15.5 bar,2 g/L NaCl | 87.1 | 98.8 | [ | |
碳纳米管 | 7 bar,2 g/L NaCl | 6.0 | 96 | [ | |
多壁碳纳米管 | 15 bar,2 g/L NaCl | 16.95 | >96 | [ | |
两性离子官能化的碳纳米管 | 24.1 bar,2 g/L NaCl | 34.7 | 98.3 | [ | |
水通道蛋白 | AQPZ-DOPC | 5 bar,0.5 g/L NaCl | 40 | 97.5 | [ |
AQPZ-DOPC | 10 bar,1 g/L NaCl | 4.1 | 97.2 | [ | |
AQPZ-DOPC/DOTAP | 4 bar,0.5 g/L NaCl | 5.5 | 75 | [ | |
MOF | ZIF-8 | 15 bar,2 g/L NaCl | 25.5 | 99.4 | [ |
MIL-101(Cr) | 10 bar,2 g/L NaCl | 32 | 99 | [ | |
沸石 | NaY | 15.5 bar,2 g/L NaCl | 42.72 | 98.8 | [ |
等离子处理的天然沸石 | 15 bar,16 g/L NaCl | 39 | 97.12 | [ | |
NaA沸石 | 13.9 bar,0.37 g/L NaCl | 53 | 97.9 | [ | |
LTL | 10.2 bar,2 g/L NaCl | 80.2 | 93,7 | [ | |
金属及其氧化物 | ZnO-NH2 | 20.7 bar,2 g/L NaCl | 31.42 | 96.3 | [ |
CuO | 20.7 bar,1 g/L NaCl | 45.2 | 97.4 | [ | |
TiO2 | 15 bar,2 g/L NaCl | 24.3 | >97 | [ | |
ZnO/Al | 15.5 bar,2 g/L NaCl | 32 | 96-98 | [ | |
其他 | 纤维素纳米晶体 | 17 bar,2 g/L NaCl | 11.44 | 97.8 | [ |
SiO2纳米颗粒 | 10 bar,2g/L NaCl | 60 | 96.5 | [ | |
SiO2纳米颗粒 | 15 bar,2 g/L NaCl | 20 | 87 | [ | |
埃洛石纳米管 | 20 bar,3 g/L NaCl | 49.6 | 99.1 | [ | |
NH2-TNTs | 15 bar,2 g/L NaCl | 57.9 | 96.53 | [ | |
MCM-48 NPs | 16 bar,2 g/L NaCl | 23.04 | 95 | [ | |
POSS | 15.5 bar,2 g/L NaCl | 20 | 98 | [ | |
蒙脱石 | 16 bar,2 g/L NaCl | 51.7 | 99 | [ | |
层状氢氧化物 | 16 bar,2 g/L NaCl | 41.7 | 99.3 | [ | |
聚合物囊泡 | 35 bar,32 g/L NaCl | 20 | 98.9 | [ | |
硅纳米颗粒 | 44 bar,11g/L NaCl | 49 | 95 | [ | |
两性胶体纳米颗粒 | 15 bar,2 g/L NaCl | 37.3 | >96.5 | [ |
水相单体 | 油相单体 | 测试条件 | 通量/(L·?m-2· h-1) | NaCl截留率/% | 文献 |
---|---|---|---|---|---|
MPD | TMC | 15.5 bar,2 g/L NaCl | 16~85 | 92~99.6 | [ |
55.5 bar,32.8 g/L NaCl | 15~65 | 95~99.8 | [ | ||
EDBSA | TMC | 12 bar,2 g/L NaCl | 8.5 | 96.8 | [ |
EDADMBSA | TMC | 15.5 bar,1 g/L NaCl | 29.45 | 96 | [ |
DAT | TMC | 35 bar,35 g/L NaCl | 9.3 | 98.3 | [ |
18 bar,1 g/L NaCl | 11.4 | 99.54 | [ | ||
MPD | TMDMA | 10 bar,2 g/L NaCl | 63 | 67 | [ |
MpMPD | TMC | 15 bar,2 g/L NaCl | 24.75 | 97.8 | [ |
MPD | IPC | 55.5 bar,32.8g/L NaCl | 43.7 | 99.7 | [ |
MPD | BTEC | 55.5 bar,32.8 g/L NaCl | 43.7 | 99.7 | [ |
MPD | BTEC | 15.5 bar,2 g/L NaCl | 79 | 99.1 | [ |
MPD | BCPP | 15.5 bar,2 g/L NaCl | 79 | 99.1 | [ |
PMABSA | TMC | 15.5 bar,2 g/L NaCl | 18.29 | 98.2 | [ |
AEPPS | TMC | 15.5 bar,2 g/L NaCl | 54.5 | 98 | [ |
PPD | TMC | 15.5 bar,2 g/L NaCl | 24 | 91 | [ |
表3 不同单体及其制备反渗透膜的性能
Table 3 Different monomers and performance of reverse osmosis membranes prepared with the monomers
水相单体 | 油相单体 | 测试条件 | 通量/(L·?m-2· h-1) | NaCl截留率/% | 文献 |
---|---|---|---|---|---|
MPD | TMC | 15.5 bar,2 g/L NaCl | 16~85 | 92~99.6 | [ |
55.5 bar,32.8 g/L NaCl | 15~65 | 95~99.8 | [ | ||
EDBSA | TMC | 12 bar,2 g/L NaCl | 8.5 | 96.8 | [ |
EDADMBSA | TMC | 15.5 bar,1 g/L NaCl | 29.45 | 96 | [ |
DAT | TMC | 35 bar,35 g/L NaCl | 9.3 | 98.3 | [ |
18 bar,1 g/L NaCl | 11.4 | 99.54 | [ | ||
MPD | TMDMA | 10 bar,2 g/L NaCl | 63 | 67 | [ |
MpMPD | TMC | 15 bar,2 g/L NaCl | 24.75 | 97.8 | [ |
MPD | IPC | 55.5 bar,32.8g/L NaCl | 43.7 | 99.7 | [ |
MPD | BTEC | 55.5 bar,32.8 g/L NaCl | 43.7 | 99.7 | [ |
MPD | BTEC | 15.5 bar,2 g/L NaCl | 79 | 99.1 | [ |
MPD | BCPP | 15.5 bar,2 g/L NaCl | 79 | 99.1 | [ |
PMABSA | TMC | 15.5 bar,2 g/L NaCl | 18.29 | 98.2 | [ |
AEPPS | TMC | 15.5 bar,2 g/L NaCl | 54.5 | 98 | [ |
PPD | TMC | 15.5 bar,2 g/L NaCl | 24 | 91 | [ |
改性方法 | 目的 | 常用的改性剂 | 基膜的变化 | 测试条件及制备反渗透膜的性能 |
---|---|---|---|---|
添加剂 | 添加剂能分散或者溶解在铸膜液中,并能与聚合物分子或者溶剂相互作用,从而影响形成基膜的孔结构、孔隙率及亲疏水性 | PVP[ | 基膜的孔径、孔隙率和交联程度降低 | 55.2 bar,3.2 g/L NaCl; 30 L·?m-2·h-1,99% |
TA[ | 增加基膜的孔隙率和孔密度,提高基膜的亲水性 | 15.5 bar,2 g/L NaCl; 50 L·?m-2·h-1,99.24% | ||
CNT[ | 基膜的孔隙率、孔径和亲水性增加,膜表面的电负性更强 | 20 bar,2 g/L NaCl; 24 L·?m-2·h-1,96.1% | ||
GO[ | 提高了基膜的机械强度,降低了膜面的负电荷性,减小了孔隙率,增加了表面积 | 15.5 bar,2 g/L NaCl; 84 L·?m-2·h-1,98.2% | ||
MOF-HKUST-1 [Cu3(BCT2)][ | 增加了基膜的亲水性、孔数及孔隙率 | 17.2 bar,2 g/L NaCl; 47 L·?m-2·h-1,96% | ||
表面改性 | 包括涂覆、等离子处理、紫外接枝等;表面改性可以改变基膜表面的孔结构、孔数、化学性质及机械强度等,同时不会破坏基膜内部的结构 | PEI/PAA[ | 减小基膜的孔径、孔隙率,增强基膜表面的电负性。 | 15.5 bar,2 g/L NaCl; 8.6~24 L·?m-2·h-1,98.2%~99.4% |
氧等离子处理[ | 增加基膜表面的亲水性,处理时间过长会破坏基膜的孔结构 | 15.5 bar,2 g/L NaCl; 27~28 L·?m-2·h-1, ≥99% | ||
NaOH水解(聚丙烯腈基膜)[ | 基膜表面的亲水性增加,电负性增强 | 15.5 bar,2 g/L NaCl; 13~32 L·?m-2·h-1,99%~99.5% | ||
选择性去除 | 在铸膜液中引入纳米颗粒或者聚合物,成膜之后,通过溶解等方式选择性地去除,从而改变基膜的孔径、孔数及孔隙率等 | SiO2[ | 基膜的孔隙率和孔密度增加 | 15.5 bar,2 g/L NaCl; 55 L·?m-2·h-1,91% |
选择性溶胀 | 将基膜浸入选择性溶剂中,选择的溶剂与基膜上的聚合物分子有较强的亲和性,使得聚合物链段溶胀;干燥或进行其他处理时,溶剂挥发,聚合物链段收缩成孔,从而改变基膜的孔径、孔数及孔隙率 | DMAc[ | 基膜的孔数和孔隙率增加 | 15.5 bar,2 g/L NaCl; 66 L·?m-2·h-1,99.38% |
表4 基膜的不同改性方法及其制备反渗透膜的性能
Table 4 Different support modification methods and performance of reverse osmosis membranes prepared with the modified supports
改性方法 | 目的 | 常用的改性剂 | 基膜的变化 | 测试条件及制备反渗透膜的性能 |
---|---|---|---|---|
添加剂 | 添加剂能分散或者溶解在铸膜液中,并能与聚合物分子或者溶剂相互作用,从而影响形成基膜的孔结构、孔隙率及亲疏水性 | PVP[ | 基膜的孔径、孔隙率和交联程度降低 | 55.2 bar,3.2 g/L NaCl; 30 L·?m-2·h-1,99% |
TA[ | 增加基膜的孔隙率和孔密度,提高基膜的亲水性 | 15.5 bar,2 g/L NaCl; 50 L·?m-2·h-1,99.24% | ||
CNT[ | 基膜的孔隙率、孔径和亲水性增加,膜表面的电负性更强 | 20 bar,2 g/L NaCl; 24 L·?m-2·h-1,96.1% | ||
GO[ | 提高了基膜的机械强度,降低了膜面的负电荷性,减小了孔隙率,增加了表面积 | 15.5 bar,2 g/L NaCl; 84 L·?m-2·h-1,98.2% | ||
MOF-HKUST-1 [Cu3(BCT2)][ | 增加了基膜的亲水性、孔数及孔隙率 | 17.2 bar,2 g/L NaCl; 47 L·?m-2·h-1,96% | ||
表面改性 | 包括涂覆、等离子处理、紫外接枝等;表面改性可以改变基膜表面的孔结构、孔数、化学性质及机械强度等,同时不会破坏基膜内部的结构 | PEI/PAA[ | 减小基膜的孔径、孔隙率,增强基膜表面的电负性。 | 15.5 bar,2 g/L NaCl; 8.6~24 L·?m-2·h-1,98.2%~99.4% |
氧等离子处理[ | 增加基膜表面的亲水性,处理时间过长会破坏基膜的孔结构 | 15.5 bar,2 g/L NaCl; 27~28 L·?m-2·h-1, ≥99% | ||
NaOH水解(聚丙烯腈基膜)[ | 基膜表面的亲水性增加,电负性增强 | 15.5 bar,2 g/L NaCl; 13~32 L·?m-2·h-1,99%~99.5% | ||
选择性去除 | 在铸膜液中引入纳米颗粒或者聚合物,成膜之后,通过溶解等方式选择性地去除,从而改变基膜的孔径、孔数及孔隙率等 | SiO2[ | 基膜的孔隙率和孔密度增加 | 15.5 bar,2 g/L NaCl; 55 L·?m-2·h-1,91% |
选择性溶胀 | 将基膜浸入选择性溶剂中,选择的溶剂与基膜上的聚合物分子有较强的亲和性,使得聚合物链段溶胀;干燥或进行其他处理时,溶剂挥发,聚合物链段收缩成孔,从而改变基膜的孔径、孔数及孔隙率 | DMAc[ | 基膜的孔数和孔隙率增加 | 15.5 bar,2 g/L NaCl; 66 L·?m-2·h-1,99.38% |
基膜类型 | 基膜的特点 | RO膜测试条件 | 纯水通量/(L·?m-2·h-1) | NaCl截留率/% | 文献 |
---|---|---|---|---|---|
聚砜(PSF) | 具有较好的机械强度和热稳定性,较宽的pH操作范围;但孔径相对较小、孔隙率较低,耐溶剂、耐酸及耐氯的能力较弱 | 15.5 bar,2 g/L NaCl; | 16~85 | 92~99.6 | [21,40, 98-101] |
55.5 bar,32.8 g/L NaCl | 15~65 | 95~99.8 | [ | ||
聚醚砜(PES) | 高机械强度、高结构极性和柔韧性,耐高温,良好的环境耐受性; 耐溶剂、耐酸及耐氯的能力较弱 | 20 bar,2 g/L NaCl; | 24.2 | 96.1 | [ |
16 bar,2 g/L NaCl; | 19.68 | 96 | [ | ||
聚丙烯腈(PAN) | 优异耐溶剂性以及高亲水性 | 15.5 bar,2 g/L NaCl | 20~32 | 95.7~99.4 | [ |
聚乙烯(PE) | 孔径分布较均匀,表面孔隙率高,高机械强度和化学稳定性;表面疏水 | 15.5 bar,2 g/L NaCl | 27~28 | >99 | [ |
聚四氟乙烯(PTFE) | 较好的化学稳定性、热稳定性和较高的机械强度,膜表面较亲水 | 20 bar,2 g/L NaCl | 29.8 | 95.3 | [ |
聚酰亚胺(XP84) | 易制备,良好的热稳定性和耐溶剂性;易被氯化降解 | 20 bar,2 g/L NaCl | 6.4 | 97.9 | [ |
聚醚酰亚胺(XPEI) | 耐高温及较好的结构稳定性、化学稳定性,强度和刚性也较好 | 20 bar,2 g/L NaCl | 11 | 94.6 | [ |
聚氯乙烯(PVC) | 刚性较好,价格低廉,优异力学性能以及良好的热稳定性,耐有机溶剂;表面疏水 | 55 bar,32 g/L NaCl | >27 | <99 | [ |
聚偏二氟乙烯(PVDF) | 较好的化学、热和机械稳定性及耐腐蚀性;表面疏水 | 8 bar,1 g/L NaCl | 16.48 | >94 | [ |
表5 不同类型基膜及其制备反渗透膜的性能
Table 5 Different supports and performance of reverse osmosis membranes prepared with the supports
基膜类型 | 基膜的特点 | RO膜测试条件 | 纯水通量/(L·?m-2·h-1) | NaCl截留率/% | 文献 |
---|---|---|---|---|---|
聚砜(PSF) | 具有较好的机械强度和热稳定性,较宽的pH操作范围;但孔径相对较小、孔隙率较低,耐溶剂、耐酸及耐氯的能力较弱 | 15.5 bar,2 g/L NaCl; | 16~85 | 92~99.6 | [21,40, 98-101] |
55.5 bar,32.8 g/L NaCl | 15~65 | 95~99.8 | [ | ||
聚醚砜(PES) | 高机械强度、高结构极性和柔韧性,耐高温,良好的环境耐受性; 耐溶剂、耐酸及耐氯的能力较弱 | 20 bar,2 g/L NaCl; | 24.2 | 96.1 | [ |
16 bar,2 g/L NaCl; | 19.68 | 96 | [ | ||
聚丙烯腈(PAN) | 优异耐溶剂性以及高亲水性 | 15.5 bar,2 g/L NaCl | 20~32 | 95.7~99.4 | [ |
聚乙烯(PE) | 孔径分布较均匀,表面孔隙率高,高机械强度和化学稳定性;表面疏水 | 15.5 bar,2 g/L NaCl | 27~28 | >99 | [ |
聚四氟乙烯(PTFE) | 较好的化学稳定性、热稳定性和较高的机械强度,膜表面较亲水 | 20 bar,2 g/L NaCl | 29.8 | 95.3 | [ |
聚酰亚胺(XP84) | 易制备,良好的热稳定性和耐溶剂性;易被氯化降解 | 20 bar,2 g/L NaCl | 6.4 | 97.9 | [ |
聚醚酰亚胺(XPEI) | 耐高温及较好的结构稳定性、化学稳定性,强度和刚性也较好 | 20 bar,2 g/L NaCl | 11 | 94.6 | [ |
聚氯乙烯(PVC) | 刚性较好,价格低廉,优异力学性能以及良好的热稳定性,耐有机溶剂;表面疏水 | 55 bar,32 g/L NaCl | >27 | <99 | [ |
聚偏二氟乙烯(PVDF) | 较好的化学、热和机械稳定性及耐腐蚀性;表面疏水 | 8 bar,1 g/L NaCl | 16.48 | >94 | [ |
1 | Pinar C D, Lind M L. Nanoporous materials in polymeric membranes for desalination [J]. Current Opinion in Chemical Engineering, 2018, 20: 19-27. |
2 | Werber J R, Deshmukh A, Elimelech M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environmental Science & Technology Letters, 2016, 3(4): 112-120. |
3 | Alzahrani S, Mohammad A W. Challenges and trends in membrane technology implementation for produced water treatment: a review[J]. Journal of Water Process Engineering, 2014, 4: 107-133. |
4 | 江爱朋, 程文, 姜周曙, 等. 卷式反渗透海水淡化系统膜清洗与更换策略优化[J]. 化工学报, 2015, 66(10): 4092-4100. |
Jiang A P, Cheng W, Jiang Z S, et al. A strategy of membrane cleaning and replacing schedule for spiral-wound SWRO system[J]. CIESC Journal, 2015, 66(10): 4092-4100. | |
5 | Ghaffour N, Bundschuh J, Mahmoudi H, et al. Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems[J]. Desalination, 2015, 356: 94-114. |
6 | Mito M T, Ma X, Albuflasa H, et al. Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: state of the art and challenges for large-scale implementation[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 669-685. |
7 | Abdelkareem M A, El Haj Assad M, Sayed E T, et al. Recent progress in the use of renewable energy sources to power water desalination plants[J]. Desalination, 2018, 435: 97-113. |
8 | Alkaisi A, Mossad R, Sharifian B A. A review of the water desalination systems integrated with renewable energy[J]. Energy Procedia, 2017, 110: 268-274. |
9 | 刘美玲, 刘军, 王琴, 等. 聚电解质静电沉积改性制备高性能反渗透膜[J]. 化工学报, 2018, 69(2): 830-839. |
Liu M L, Liu J, Wang Q, et al. Surface modification of reverse osmosis membrane by electrostatic deposition of polyelectrolyte for performance improvement[J]. CIESC Journal, 2018, 69(2): 830-839. | |
10 | Elimelech M, Phillip W A. The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717. |
11 | 高学理, 王湛, 王志. 膜分离技术基础[M]. 北京: 化学工业出版社, 2019. |
Gao X L, Wang Z, Wang Z. The Basis of Membrane Separation Technology[M]. Beijing: Chemical Industry Press, 2019. | |
12 | Ryan P. Lively D S S. From water to organics in membrane separations[J]. Nature Materials, 2017, 16: 276-279. |
13 | 周艺璇, 王志, 董晨曦, 等. 双胍基化聚乙烯胺改性制备抗生物污染反渗透膜[J]. 化工学报, 2018, 69(2): 858-865. |
Zhou Y X, Wang Z, Dong C X, et al. Biguanidine functionalized polyvinylamine modified reverse osmosis membrane with improved anti-bacterial property[J]. CIESC Journal, 2018, 69(2): 858-865. | |
14 | Park K, Kim J, Yang D R, et al. Towards a low-energy seawater reverse osmosis desalination plant: a review and theoretical analysis for future directions[J]. Journal of Membrane Science, 2020, 595: 117607. |
15 | Kim J, Park K, Yang D R, et al. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants[J]. Applied Energy, 2019, 254: 113652. |
16 | Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination-development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1/2): 1-22. |
17 | Khorshidi B, Soltannia B, Thundat T, et al. Synthesis of thin film composite polyamide membranes: effect of monohydric and polyhydric alcohol additives in aqueous solution[J]. Journal of Membrane Science, 2017, 523: 336-345. |
18 | 朱姝, 赵颂, 王志, 等. 用于反渗透复合膜的海绵状结构支撑膜制备研究[J]. 化工学报, 2015, 66(10): 3991-3999. |
Zhu S, Zhao S, Wang Z, et al. Investigation of sponge-like substrates for preparation of reverse osmosis composite membranes[J]. CIESC Journal, 2015, 66(10): 3991-3999. | |
19 | Asadollahi M, Bastani D, Musavi S A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: a review[J]. Desalination, 2017, 420: 330-383. |
20 | Namvar-Mahboub M, Pakizeh M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration[J]. Separation and Purification Technology, 2013, 119: 35-45. |
21 | Shi M, Wang Z, Zhao S, et al. A support surface pore structure re-construction method to enhance the flux of TFC RO membrane[J]. Journal of Membrane Science, 2017, 541: 39-52. |
22 | Wang J, Xu R, Yang F, et al. Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane[J]. Journal of Membrane Science, 2018, 556: 374-383. |
23 | Singh P S, Joshi S V, Trivedi J J, et al. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions[J]. Journal of Membrane Science, 2006, 278(1/2): 19-25. |
24 | Ramon G Z, Wong M C Y, Hoek E M V. Transport through composite membrane (Ⅰ): Is there an optimal support membrane?[J]. Journal of Membrane Science, 2012, 415/416: 298-305. |
25 | Verbeke R, Gómez V, Vankelecom I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes[J]. Progress in Polymer Science, 2017, 72: 1-15. |
26 | Gohil J M, Suresh A K. Chlorine attack on reverse osmosis membranes: mechanisms and mitigation strategies[J]. Journal of Membrane Science, 2017, 541: 108-126. |
27 | Zhao X, Zhang R, Liu Y, et al. Antifouling membrane surface construction: chemistry plays a critical role[J]. Journal of Membrane Science, 2018, 551: 145-171. |
28 | Misdan N, Ismail A F, Hilal N. Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination[J]. Desalination, 2016, 380: 105-111. |
29 | Li D, Yan Y, Wang H. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes[J]. Progress in Polymer Science, 2016, 61: 104-155. |
30 | Oren Y S, Biesheuvel P M. Theory of ion and water transport in reverse osmosis membranes[J]. Physical Review Applied, 2018, 9(2): 024034. |
31 | Ismail A F, Matsuura T. Progress in transport theory and characterization method of reverse osmosis (RO) membrane in past fifty years[J]. Desalination, 2018, 434: 2-11. |
32 | Kavitha J, Rajalakshmi M, Phani A R, et al. Pretreatment processes for seawater reverse osmosis desalination systems—a review[J]. Journal of Water Process Engineering, 2019, 32: 100926. |
33 | Anis S F, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: a comprehensive review[J]. Desalination, 2019, 452: 159-195. |
34 | Karabelas A J, Mitrouli S T, Kostoglou M. Scaling in reverse osmosis desalination plants: a perspective focusing on development of comprehensive simulation tools[J]. Desalination, 2020, 474: 114193. |
35 | Lau W J, Ismail A F, Misdan N, et al. A recent progress in thin film composite membrane: a review[J]. Desalination, 2012, 287: 190-199. |
36 | Karimi H, Bazrgar Bajestani M, Mousavi S A, et al. Polyamide membrane surface and bulk modification using humid environment as a new heat curing medium[J]. Journal of Membrane Science, 2017, 523: 129-137. |
37 | Zhao S, Xue J, Kang W. Ion selection of charge-modified large nanopores in a graphene sheet[J]. The Journal of Chemical Physics, 2013, 139(11): 114702. |
38 | Zargar M, Jin B, Dai S. An integrated statistic and systematic approach to study correlation of synthesis condition and desalination performance of thin film composite membranes[J]. Desalination, 2016, 394: 138-147. |
39 | Misdan N, Lau W J, Ismail A F. Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane-current development, challenges and future prospects[J]. Desalination, 2012, 287: 228-237. |
40 | Otitoju T A, Saari R A, Ahmad A L. Progress in the modification of reverse osmosis (RO) membranes for enhanced performance[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 52-71. |
41 | Vatanpour V, Sheydaei M, Esmaeili M. Box-Behnken design as a systematic approach to inspect correlation between synthesis conditions and desalination performance of TFC RO membranes[J]. Desalination, 2017, 420: 1-11. |
42 | Duan J, Pan Y, Pacheco F, et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8[J]. Journal of Membrane Science, 2015, 476: 303-310. |
43 | Xu J, Yan H, Zhang Y, et al. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes[J]. Journal of Membrane Science, 2017, 541: 174-188. |
44 | Karthik M, Gohil J M, Suresh A K. Probing the thickness and roughness of the functional layer in thin film composite membranes[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26464-26474. |
45 | Roh I J, Greenberg A R, Khare V P. Synthesis and characterization of interfacially polymerized polyamide thin films[J]. Desalination, 2006, 191(1/2/3): 279-290. |
46 | Badalov S, Arnusch C J. Ink-jet printing assisted fabrication of thin film composite membranes[J]. Journal of Membrane Science, 2016, 515: 79-85. |
47 | Kadhom M, Deng B. Synthesis of high-performance thin film composite (TFC) membranes by controlling the preparation conditions: technical notes[J]. Journal of Water Process Engineering, 2019, 30: 100542. |
48 | Chi X, Zhang P, Guo X, et al. A novel TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane[J]. Applied Surface Science, 2018, 427: 1-9. |
49 | Lee J, Wang R, Bae T. A comprehensive understanding of co-solvent effects on interfacial polymerization: interaction with trimesoyl chloride[J]. Journal of Membrane Science, 2019, 583: 70-80. |
50 | Liu Z, Zhu G, Wei Y, et al. Enhanced flux performance of polyamide composite membranes prepared via interfacial polymerization assisted with ethyl formate[J]. Water Science and Technology, 2017, 76(7): 1884-1894. |
51 | Yan W, Wang Z, Zhao S, et al. Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection[J]. Journal of Membrane Science, 2019, 572: 61-72. |
52 | Shi M, Yan W, Zhou Y, et al. Combining tannic acid-modified support and a green co-solvent for high performance reverse osmosis membranes[J]. Journal of Membrane Science, 2020, 595: 117474. |
53 | Khorshidi B, Thundat T, Pernitsky D, et al. A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane[J]. Journal of Membrane Science, 2017, 535: 248-257. |
54 | Chen D, Zhao X, Li F, et al. Influence of surfactant fouling on rejection of trace nuclides and boron by reverse osmosis[J]. Desalination, 2016, 377: 47-53. |
55 | Ma X, Yang Z, Yao Z, et al. Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance[J]. Journal of Colloid and Interface Science, 2019, 540: 382-388. |
56 | Kotp Y H, Shebl Y A, El-Deab M S, et al. Performance enhancement of PA-TFC RO membrane by using magnesium silicate nanoparticles[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(S1): 201-214. |
57 | Yang Z, Guo H, Tang C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. Journal of Membrane Science, 2019, 590: 117297. |
58 | Hao X, Gao S, Tian J, et al. Calcium-carboxyl intrabridging during interfacial polymerization: a novel strategy to improve antifouling performance of thin film composite membranes[J]. Environmental Science & Technology, 2019, 53(8): 4371-4379. |
59 | Zhao L, Ho W S W. Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination[J]. Journal of Membrane Science, 2014, 455: 44-54. |
60 | Teow Y H, Mohammad A W. New generation nanomaterials for water desalination: a review[J]. Desalination, 2019, 451: 2-17. |
61 | Shenvi S S, Isloor A M, Ismail A F. A review on RO membrane technology: developments and challenges[J]. Desalination, 2015, 368: 10-26. |
62 | Jeong B, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes[J]. Journal of Membrane Science, 2007, 294(1/2): 1-7. |
63 | Farahbakhsh J, Delnavaz M, Vatanpour V. Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties[J]. Desalination, 2017, 410: 1-9. |
64 | Inurria A, Cay-Durgun P, Rice D, et al. Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: balancing membrane performance and fouling propensity[J]. Desalination, 2019, 451: 139-147. |
65 | Qi S, Fang W, Siti W, et al. Polymersomes-based high-performance reverse osmosis membrane for desalination[J]. Journal of Membrane Science, 2018, 555: 177-184. |
66 | Ali M E A, Wang L, Wang X, et al. Thin film composite membranes embedded with graphene oxide for water desalination[J]. Desalination, 2016, 386: 67-76. |
67 | Safarpour M, Khataee A, Vatanpour V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. Journal of Membrane Science, 2015, 489: 43-54. |
68 | Fathizadeh M, Tien H N, Khivantsev K, et al. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination[J]. Desalination, 2019, 451: 125-132. |
69 | Li Y, Li S, Zhang K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes[J]. Journal of Membrane Science, 2017, 537: 42-53. |
70 | Takeuchi K, Takizawa Y, Kitazawa H, et al. Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions[J]. Desalination, 2018, 443: 165-171. |
71 | Wan A I, Goh P S, Lau W J, et al. Facile acid treatment of multiwalled carbon nanotube-titania nanotube thin film nanocomposite membrane for reverse osmosis desalination[J]. Journal of Cleaner Production, 2018, 181: 517-526. |
72 | Chan W, Marand E, Martin S M. Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance[J]. Journal of Membrane Science, 2016, 509: 125-137. |
73 | Li X, Chou S, Wang R, et al. Nature gives the best solution for desalination: aquaporin-based hollow fiber composite membrane with superior performance[J]. Journal of Membrane Science, 2015, 494: 68-77. |
74 | Qi S, Wang R, Chaitra G K M, et al. Aquaporin-based biomimetic reverse osmosis membranes: stability and long-term performance[J]. Journal of Membrane Science, 2016, 508: 94-103. |
75 | Wang M, Wang Z, Wang X, et al. Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification[J]. Environmental Science & Technology, 2015, 49(6): 3761-3768. |
76 | Aljundi I H. Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles[J]. Desalination, 2017, 420: 12-20. |
77 | Xu Y, Gao X, Wang X, et al. Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101 (Cr) nanoparticles for reverse osmosis application[J]. Materials, 2016, 9(11): 870. |
78 | Dong H, Zhao L, Zhang L, et al. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination[J]. Journal of Membrane Science, 2015, 476: 373-383. |
79 | Safarpour M, Vatanpour V, Khataee A, et al. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite[J]. Desalination, 2017, 411: 89-100. |
80 | Cay-Durgun P, Mccloskey C, Konecny J, et al. Evaluation of thin film nanocomposite reverse osmosis membranes for long-term brackish water desalination performance[J]. Desalination, 2017, 404: 304-312. |
81 | Dong L, Huang X, Wang Z, et al. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles[J]. Separation and Purification Technology, 2016, 166: 230-239. |
82 | Rajakumaran R, Boddu V, Kumar M, et al. Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination[J]. Desalination, 2019, 467: 245-256. |
83 | García A, Rodríguez B, Oztürk D, et al. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties[J]. Polymer Bulletin, 2018, 75(5): 2053-2069. |
84 | Khorshidi B, Biswas I, Ghosh T, et al. Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity[J]. Scientific Reports, 2018, 8(1): 1290-1297. |
85 | Al-Hobaib A S, Ghoul A L. Synthesis and characterization of polyamide thin-film nanocomposite membrane reached by aluminum doped ZnO nanoparticles[J]. Materials Science in Semiconductor Processing, 2016, 42: 111-114. |
86 | Smith E, Hendren K, Haag J, et al. Functionalized cellulose nanocrystal nanocomposite membranes with controlled interfacial transport for improved reverse osmosis performance[J]. Nanomaterials, 2019, 9(1): 125. |
87 | Shen H, Wang S, Xu H, et al. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in-situ polymerization of SiCl4 in organic solution[J]. Journal of Membrane Science, 2018, 565: 145-156. |
88 | Peyki A, Rahimpour A, Jahanshahi M. Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic SiO2 nanoparticles[J]. Desalination, 2015, 368: 152-158. |
89 | Asempour F, Akbari S, Bai D, et al. Improvement of stability and performance of functionalized halloysite nano tubes-based thin film nanocomposite membranes[J]. Journal of Membrane Science, 2018, 563: 470-480. |
90 | Emadzadeh D, Lau W J, Rahbari-Sisakht M, et al. A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination[J]. Desalination, 2015, 368: 106-113. |
91 | Liu L, Zhu G, Liu Z, et al. Effect of MCM-48 nanoparticles on the performance of thin film nanocomposite membranes for reverse osmosis application[J]. Desalination, 2016, 394: 72-82. |
92 | Duan J, Litwiller E, Pinnau I. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 473: 157-164. |
93 | Dong H, Wu L, Zhang L, et al. Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes[J]. Journal of Membrane Science, 2015, 494: 92-103. |
94 | Zargar M, Hartanto Y, Jin B, et al. Hollow mesoporous silica nanoparticles: a peculiar structure for thin film nanocomposite membranes[J]. Journal of Membrane Science, 2016, 519: 1-10. |
95 | Ma R, Li J Y, Shen G Y, et al. Fabrication of antifouling reverse osmosis membranes by incorporating zwitterionic colloids nanoparticles for brackish water desalination[J]. Desalination, 2017, (416): 35-44. |
96 | Hu J H, Pu Y L, Ueda M, et al. Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalination and boron removal[J]. Journal of Membrane Science, 2016, 520: 1-7. |
97 | Zhao Y, Zhang Z, Dai L, et al. Enhanced both water flux and salt rejection of reverse osmosis membrane through combining isophthaloyl dichloride with biphenyl tetraacyl chloride as organic phase monomer for seawater desalination[J]. Journal of Membrane Science, 2017, 522: 175-182. |
98 | Gholami S, Rezvani A, Vatanpour V, et al. Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating[J]. Desalination, 2018, 443: 245-255. |
99 | Chae H, Lee J, Lee C, et al. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J]. Journal of Membrane Science, 2015, 483: 128-135. |
100 | Shin M G, Park S, Kwon S J, et al. Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol[J]. Journal of Membrane Science, 2019, 578: 220-229. |
101 | Wang J, Wang Z, Wang J, et al. Improving the water flux and bio-fouling resistance of reverse osmosis (RO) membrane through surface modification by zwitterionic polymer[J]. Journal of Membrane Science, 2015, 493: 188-199. |
102 | Weinrich L, Lechevallier M, Haas C N. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment[J]. Water Research, 2016, 101: 203-213. |
103 | Kim J, Hong S. Optimizing seawater reverse osmosis with internally staged design to improve product water quality and energy efficiency[J]. Journal of Membrane Science, 2018, 568: 76-86. |
104 | Sharabati J, Guclu S, Erkoc-Ilter S, et al. Interfacially polymerized thin-film composite membranes: impact of support layer pore size on active layer polymerization and seawater desalination performance[J]. Separation and Purification Technology, 2019, 212: 438-448. |
105 | Okamoto Y, Lienhard J H. How RO membrane permeability and other performance factors affect process cost and energy use: a review[J]. Desalinatio, 2019, 470: 114064. |
106 | Zheng J, Yao Y, Li M, et al. A non-MPD-type reverse osmosis membrane with enhanced permselectivity for brackish water desalination[J]. Journal of Membrane Science, 2018, 565: 104-111. |
107 | Said M, Ebrahim S, Gad A, et al. Toward energy efficient reverse osmosis polyamide thin film composite membrane based on diaminotoulene[J]. Desalination and Water Treatment, 2017, 71: 261-270. |
108 | Yuan B, Li P, Sun H, et al. Novel non-trimesoyl chloride-based polyamide membrane with significantly reduced Ca2+ surface deposition density[J]. Journal of Membrane Science, 2019, 578: 251-262. |
109 | Li S, Wu P, Wang J, et al. Fabrication of high-performance polyamide reverse osmosis membrane from monomer 4-morpholino-m-phenylenediamine and tailoring with zwitterions[J]. Desalination, 2020, 473: 114169. |
110 | Zhao Y, Zhang Z, Dai L, et al. Preparation of high-water flux and antifouling RO membranes using a novel diacyl chloride monomer with a phosphonate group[J]. Journal of Membrane Science, 2017, 536: 98-107. |
111 | Yao Y, Li M, Cao X, et al. A novel sulfonated reverse osmosis membrane for seawater desalination: experimental and molecular dynamics studies[J]. Journal of Membrane Science, 2018, 550: 470-479. |
112 | Ma R, Ji Y, Weng X, et al. High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization[J]. Desalination, 2016, 381: 100-110. |
113 | Choi W, Jeon S, Kwon S J, et al. Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization[J]. Journal of Membrane Science, 2017, 527: 121-128. |
114 | Li J, Wei M, Wang Y. Substrate matters: the influences of substrate layers on the performances of thin-film composite reverse osmosis membranes[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1676-1684. |
115 | Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes[J]. Journal of Membrane Science, 2009, 336(1/2): 140-148. |
116 | Shi M, Wang Z, Zhao S, et al. A novel pathway for high performance RO membrane: preparing active layer with decreased thickness and enhanced compactness by incorporating tannic acid into the support[J]. Journal of Membrane Science, 2018, 555: 157-168. |
117 | Son M, Choi H, Liu L, et al. Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination[J]. Chemical Engineering Journal, 2015, 266: 376-384. |
118 | Lee J, Jang J H, Chae H, et al. A facile route to enhance the water flux of thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide in highly porous support layer[J]. Journal of Materials Chemistry A, 2015, 3: 22053-22060. |
119 | Park H M, Jee K Y, Lee Y T. Preparation and characterization of a thin-film composite reverse osmosis membrane using a polysulfone membrane including metal-organic frameworks[J]. Journal of Membrane Science, 2017, 541: 510-518. |
120 | Choi W, Gu J, Park S, et al. Tailor-made polyamide membranes for water desalination[J]. ACS Nano, 2015, 9(1): 345-355. |
121 | Park S, Kwon S J, Shin M G, et al. Polyethylene-supported high-performance reverse osmosis membranes with enhanced mechanical and chemical durability[J]. Desalination, 2018, 436: 28-38. |
122 | Park S, Ahn W, Choi W, et al. A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating[J]. Journal of Materials Chemistry A, 2017, 5(14): 6648-6655. |
123 | Yan W, Wang Z, Wu J, et al. Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method[J]. Journal of Membrane Science, 2016, 498: 227-241. |
124 | Qasim M, Badrelzaman M, Darwish N N, et al. Reverse osmosis desalination: a state-of-the-art review[J]. Desalination, 2019, 459: 59-104. |
125 | Beuscher W, Gooding C H. The influence of the porous support layer of composite membranes on the separation of binary gas mixtures[J]. Journal of Membrane Science, 1999, 152: 99-116. |
126 | Misdan N, Lau W J, Ismail A F, et al. Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics[J]. Desalination, 2013, 329: 9-18. |
127 | Peyravi M, Rahimpour M, Jahanshahi M. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration[J]. Journal of Membrane Science, 2012, 423/424: 225-237. |
128 | Zhu S, Zhao S, Wang Z, et al. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate[J]. Journal of Membrane Science, 2015, 493: 263-274. |
129 | Liao Y, Farrell T P, Guillen G R, et al. Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes[J]. Mater. Horiz., 2014, 1(1): 58-64. |
130 | He M, Li T, Hu M, et al. Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates[J]. Separation and Purification Technology, 2020, 230: 115855. |
131 | Mollahosseini A, Rahimpour A. Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1261-1268. |
132 | Sotto A, Boromand A, Balta S, et al. Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles[J]. Journal of Materials Chemistry, 2011, 21(28): 10311. |
133 | Geise G M, Park H B, Sagle A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. Journal of Membrane Science, 2011, 369(1/2): 130-138. |
134 | Wang Y, Tong L, Steinhart M. Swelling-induced morphology reconstruction in block copolymer nanorods: kinetics and impact of surface tension during solvent evaporation[J]. ACS Nano, 2011, 5(3): 1928-1938. |
135 | Yin J, Yao X, Liou J, et al. Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers[J]. ACS Nano, 2013, 7(11): 9961-9974. |
136 | 田欣霞. 基膜调控及其对复合膜结构和性能影响[D]. 天津: 天津大学, 2015. |
Tian X X. Substrate regulation and its influence on composite membrane structure and performance[D]. Tianjin: Tianjin University, 2015. | |
137 | Huang L, Mccutcheon J R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis[J]. Journal of Membrane Science. 2015, 483: 25-33. |
138 | Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes[J]. Journal of Membrane Science, 2009, 336(1/2): 140-148. |
139 | Zhang Q, Zhang Z, Dai L, et al. Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes[J]. Journal of Membrane Science, 2017, 537: 372-383. |
140 | Xu G, Xu J, Feng H, et al. Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review[J]. Desalination, 2017, 417: 19-35. |
141 | Lee T H, Lee M Y, Lee H D, et al. Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 2017, 539: 441-450. |
142 | Son M, Park H, Liu L, et al. Thin-film nanocomposite membrane with CNT positioning in support layer for energy harvesting from saline water[J]. Chemical Engineering Journal, 2016, 284: 68-77. |
143 | Alsvik I L, Hägg M. Preparation of thin film composite membranes with polyamide film on hydrophilic supports[J]. Journal of Membrane Science, 2013, 428: 225-231. |
144 | Maruf S H, Greenberg A R, Pellegrino J, et al. Fabrication and characterization of a surface-patterned thin film composite membrane[J]. Journal of Membrane Science, 2014, 452: 11-19. |
145 | Chao W, Huang Y, Hung W, et al. Effect of the surface property of poly(tetrafluoroethylene) support on the mechanism of polyamide active layer formation by interfacial polymerization[J]. Soft Matter., 2012, 8(34): 8994-8998. |
146 | Elsherbiny I M A, Ghannam R, Khalil A S G, et al. Isotropic macroporous polyethersulfone membranes as competitive supports for high performance polyamide desalination membranes[J]. Journal of Membrane Science, 2015, 493: 782-793. |
147 | Jiang Z, Karan S, Livingston A G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis[J]. Advanced Materials, 2018, 30(15): 1705973. |
148 | Sabzi D B, Asadollahi M, Musavi S A, et al. Preparation of poly(vinyl chloride) (PVC) ultrafiltration membranes from PVC/additive/solvent and application of UF membranes as substrate for fabrication of reverse osmosis membranes[J]. Journal of Applied Polymer Science, 2018, 135(21): 46267. |
149 | Xu G R, Zhao H L, Wu S B. Polyamide nanofilm composite membranes (NCMs) supported by chitosan-coated polyvinyldenefluoride (PVDF) nanofibrous mats and their separation properties[J]. Desalination and Water Treatment, 2016, 57: 23522-23535. |
150 | Shafi H Z, Khan Z, Yang R, et al. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling[J]. Desalination, 2015, 362: 93-103. |
151 | Ma X, Yao Z, Yang Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2): 123-130. |
152 | Cohen-Tanugi D, Mcgovern R K, Dave S H, et al. Quantifying the potential of ultra-permeable membranes for water desalination[J]. Energy Environ. Sci., 2014, 7(3): 1134-1141. |
153 | Ma X, Guo H, Yang Z, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570/571: 139-145. |
154 | Ma X, Yang Z, Yao Z, et al. Interfacial polymerization with electrosprayed microdroplets: toward controllable and ultrathin polyamide membranes[J]. Environmental Science & Technology Letters, 2018, 5(2): 117-122. |
155 | Park S, Choi W, Nam S, et al. Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization[J]. Journal of Membrane Science, 2017, 526: 52-59. |
156 | Johnson P M, Yoon J, Kelly J Y, et al. Molecular layer-by-layer deposition of highly crosslinked polyamide films[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(3): 168-173. |
157 | Gu J, Lee J S, Park S, et al. Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance[J]. Applied Surface Science, 2015, 356: 659-667. |
158 | Song X, Qi S, Tang C Y, et al. Ultra-thin, multi-layered polyamide membranes: synthesis and characterization[J]. Journal of Membrane Science, 2017, 540: 10-18. |
159 | Gu J, Lee S, Stafford C M, et al. Molecular layer-by-layer assembled thin-film composite membranes for water desalination[J]. Advanced Materials, 2013, 25(34): 4778-4782. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[15] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||