1 |
Sarkar S, Sengupta A K, Prakash P. The Donnan membrane principle: opportunities for sustainable engineered processes and materials [J]. Environmental Science & Technology, 2010, 44(4): 1161-1166.
|
2 |
Fox S, Bruner T, Oren Y, et al. Concurrent microbial reduction of high concentrations of nitrate and perchlorate in an ion exchange membrane bioreactor [J]. Biotechnology and Bioengineering, 2016, 113(9): 1881-1891.
|
3 |
Wisniewski J A, Kabsch-Korbutowicz M, Lakomska S. Removal of bromate ions from water in the processes with ion-exchange membranes [J]. Separation and Purification Technology, 2015, 145: 75-82.
|
4 |
Lao M, Companys E, Weng L P, et al. Speciation of Zn, Fe, Ca and Mg in wine with the Donnan membrane technique [J]. Food Chemistry, 2018, 239: 1143-1150.
|
5 |
Breytus A, Hasson D, Semiat R, et al. Ion exchange membrane adsorption in Donnan dialysis [J]. Separation and Purification Technology, 2019, 226: 252-258.
|
6 |
Bjorklund G, Aaseth J, Chirumbolo S, et al. Effects of arsenic toxicity beyond epigenetic modifications [J]. Environmental Geochemistry and Health, 2018, 40(3): 955-965.
|
7 |
Tchounwou P B, Yedjou C G, Udensi U K, et al. State of the science review of the health effects of inorganic arsenic: perspectives for future research [J]. Environmental Toxicology, 2019, 34(2): 188-202.
|
8 |
Zhao B, Zhao H Z, Dockko S, et al. Arsenate removal from simulated groundwater with a Donnan dialyzer [J]. Journal of Hazardous Materials, 2012, 215: 159-165.
|
9 |
赵斌, 刘安琪, 刁法林, 等. 道南渗析除砷过程影响因素分析[J]. 化工学报, 2016, 67(6): 2456-2461.
|
|
Zhao B, Liu A Q, Diao F L, et al. Kinetic analysis of arsenate removal by Donnan dialysis [J]. CIESC Journal, 2016, 67(6): 2456-2461.
|
10 |
Li Y M, Guo X J, Dong H Y, et al. Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants [J]. Chemical Engineering Journal, 2018, 345: 432-440.
|
11 |
Zhu F, Ma S Y, Liu T, et al. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater [J]. Journal of Cleaner Production, 2018, 174: 184-190.
|
12 |
Li Z H, Xu S Y, Xiao G H, et al. Removal of hexavalent chromium from groundwater using sodium alginate dispersed nano zero-valent iron [J]. Journal of Environmental Management, 2019, 244: 33-39.
|
13 |
Huang J Y, Yi S P, Zheng C M, et al. Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater [J]. Science of the Total Environment, 2019, 684: 351-359.
|
14 |
Fu F L, Dionysiou D D, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review [J]. Journal of Hazardous Materials, 2014, 267: 194-205.
|
15 |
Song X J, Zhang C, Wu B D, et al. Ligand effects on arsenite removal by zero-valent iron/O2: dissolution, corrosion, oxidation and coprecipitation [J]. Journal of Environmental Sciences, 2019, 86: 131-140.
|
16 |
Du M M, Zhang Y Q, Hussain I, et al. Effect of pyrite on enhancement of zero-valent iron corrosion for arsenic removal in water: a mechanistic study [J]. Chemosphere, 2019, 233: 744-753.
|
17 |
Liang Y J, Min X B, Chai L Y, et al. Stabilization of arsenic sludge with mechanochemically modified zero valent iron [J]. Chemosphere, 2017, 168: 1142-1151.
|
18 |
Mejia-Santillan M E, Pariona N, Bravo J, et al. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles [J]. Journal of Magnetism and Magnetic Materials, 2018, 451: 594-601.
|
19 |
Mansouri T, Golchin A, Neyestani M R. The effects of hematite nanoparticles on phytoavailability of arsenic and corn growth in contaminated soils [J]. International Journal of Environmental Science and Technology, 2017, 14(7): 1525-1534.
|
20 |
Ramirez-Muniz K, Perez-Rodriguez F, Rangel-Mendez R. Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite [J]. Journal of Molecular Liquids, 2018, 264: 253-260.
|
21 |
Kim H, Andersson T G. Arsenic surface segregation during the molecular-beam epitaxial growth of GaAs embedded in wurtzite GaN [J]. Applied Physics Letters, 2002, 80(25): 4768-4770.
|
22 |
Dou X M, Wang G C, Zhu M Q, et al. Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces [J]. Journal of Hazardous Materials, 2018, 353: 340-347.
|
23 |
Su C M, Puls R W. Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride [J]. Environmental Science & Technology, 2001, 35(22): 4562-4568.
|
24 |
Gibert O, de Pablo J, Cortina J L, et al. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures [J]. Environmental Geochemistry and Health, 2010, 32(4): 373-378.
|
25 |
Gatcha-Bandjun N, Noubactep C, Loura B B. Mitigation of contamination in effluents by metallic iron: the role of iron corrosion products [J]. Environmental Technology & Innovation, 2017, 8: 71-83.
|
26 |
Yang Z, Xu H, Shan C, et al. Effects of brining on the corrosion of ZVI and its subsequent As(Ⅲ/Ⅴ) and Se(Ⅳ/Ⅵ) removal from water[J]. Chemosphere, 2017, 170: 251-259.
|
27 |
Liu P P, Liang Q W, Luo H J, et al. Synthesis of nano-scale zero-valent iron-reduced graphene oxide-silica nano-composites for the efficient removal of arsenic from aqueous solutions [J]. Environmental Science and Pollution Research, 2019, 26(32): 33507-33516.
|
28 |
Mercer K L, Tobiason J E. Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO [J]. Environmental Science & Technology, 2008, 42(10): 3797-3802.
|
29 |
Farrell J, Wang J P, O'day P, et al. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iran media [J]. Environmental Science & Technology, 2001, 35(10): 2026-2032.
|
30 |
Esfahani A R, Firouzi A F, Sayyad G, et al. Transport and retention of polymer-stabilized zero-valent iron nanoparticles in saturated porous media: effects of initial particle concentration and ionic strength [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2671-2679.
|