化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5521-5529.DOI: 10.11949/0438-1157.20200621
收稿日期:
2020-05-21
修回日期:
2020-09-21
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
李维仲
作者简介:
宋立超(1994—),男,硕士研究生,基金资助:
SONG Lichao(),QIN Yan,LI Weizhong()
Received:
2020-05-21
Revised:
2020-09-21
Online:
2020-12-05
Published:
2020-12-05
Contact:
LI Weizhong
摘要:
研究了在冷面温度Tw=-10℃和-30℃,环境相对湿度RH=60%和80%,3种润湿性表面在不同磁场强度下的结霜规律。通过可视化观测和图像二值化处理计算,分析了磁场强度和表面接触角对霜晶形态、水珠粒径、结晶时间、液滴和霜晶覆盖率、霜层厚度和密度的影响。结果表明:磁场作用下,疏水性表面水珠粒径减小40%左右,结晶时间延长500 s以上,凝结水珠分布更加稀疏;结霜厚度和密度随着磁场强度和接触角的增大而减小;随着冷面温度的降低和相对湿度的增大,表面特性和外加磁场对结霜过程的影响降低。
中图分类号:
宋立超,秦妍,李维仲. 磁场作用下不同润湿性表面结霜实验研究[J]. 化工学报, 2020, 71(12): 5521-5529.
SONG Lichao,QIN Yan,LI Weizhong. Experimental study of frosting on different wettability surfaces under magnetic field[J]. CIESC Journal, 2020, 71(12): 5521-5529.
1 | Zhang Y, Klittich M R, Gao M, et al. Delaying frost formation by controlling surface chemistry of carbon nanotube-coated steel surfaces[J]. Applied Materials and Interfaces, 2017, 9(7): 6512-6519. |
2 | Liu Z L, Dong Y W, Li Y X. An experimental study of frost formation on cryogenic surfaces under natural convection conditions[J]. International Journal of Heat and Mass Transfer, 2016, 97: 569-577. |
3 | 李丽艳, 刘中良, 赵玲倩, 等. 结霜初期无液核形成时的抑霜研究[J]. 工程热物理学报, 2019, 40(1): 198-203. |
Li L Y, Liu Z L, Zhao L Q, et al. Study on anti-frosting performance of hydrophobic surface without the appearance of water nuclei at the initial stage of frost formation[J]. Journal of Engineering Thermophysics, 2019, 40(1): 198-203. | |
4 | 孙玉清, 吴桂涛, 刘慧枝, 等. 抑制换热器湿空气侧结霜的研究[J]. 工程热物理学报, 1997, 18(1): 95-98. |
Sun Y Q, Wu G T, Liu H Z, et al. Study on inhibiting frosting on wet air side of heat exchanger[J]. Journal of Engineering Thermophysics, 1997, 18(1): 95-98. | |
5 | 吴晓敏, 单小丰, 王维城, 等. 冷表面结霜的微细观可视化研究[J]. 清华大学学报, 2003, 43(10): 1437-1440. |
Wu X M, Shan X F, Wang W C, et al. Meso-scale visual observation of frost formation on cold surfaces[J].J. Tsinghua Univ., 2003, 43(10): 1437-1440. | |
6 | Jung S, Dorrestijin M, Raps D, et al. Are superhydrophobic surfaces best for icephobicity[J]. Langmuir, 2011, 27(6): 3059-3066. |
7 | He M, Wang J X, Li H L, et al. Super-hydrophobic film retards frost formation[J]. Soft Matter, 2010, 6: 2396-2399. |
8 | Boreyko J B, Collier C P. Delayed frost growth on jumping-drop superhydrophobic surfaces[J]. ACS Nano, 2013, 7(2): 1618-1627. |
9 | 季银炼. 结霜前期纳米结构超疏水表面的凝结-冻结特性[J]. 中国表面工程, 2017, 30(6): 18-25. |
Ji Y L. Condensation and freezing characteristics of nano-structured superhydrophobic surface in early frosting stage[J]. China Surface Engineering, 2017, 30(6): 18-25. | |
10 | Zheng S L, Li C, et al. Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications[J]. Materials and Design, 2016, 93: 261-270. |
11 | Wang Y, Cheng Y. Early stage condensation frosting characteristics on plain and nano Al2O3-epoxy mixture-coated brass[J]. Applied Thermal Engineering, 2019, 160: 113971. |
12 | Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery? [J]. Nature Reviews Materials, 2016, 1: 1-15. |
13 | Farhadi S, Farzaneh M, Kulinich S A. Anti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science, 2011, 257: 6264-6269. |
14 | Mok J H, Choi W, Park S H, et al. Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing[J]. International Journal of Refrigeration, 2015, 50: 137-145. |
15 | 邓波. 磁处理水的物理特性及其生物效应的研究[D]. 成都: 电子科技大学, 2009. |
Deng B. The research on physical properties and bio effects of magnetized water[D]. Chengdu: University of Electronic Science and Technology of China, 2009. | |
16 | 蔡然, 杨宏伟, 和劲松, 等. 磁场处理对CaCl2溶液中水分子结构的影响[J]. 清华大学学报, 2010, 50(9): 1404-1407. |
Cai R, Yang H W, He J S, et al. Effect of magnetic field treatment on water molecular structure in CaCl2 solution[J]. J. Tsinghua University, 2010, 50(9): 1404-1407. | |
17 | 和劲松, 杨宏伟, 蔡然, 等. β-乳球蛋白在磁化水中的水合作用: 磁化处理对水分子缔合构造及蛋白质水合特性的影响[J]. 物理化学学报, 2010, 26(2): 304-310. |
He J S, Yang H W, Cai R, et al. Hydration of β-lactoglobulin in magnetized water: effect of magnetic treatment on the cluste structure of water and hydration properties of proteins[J]. Acta Phys. -Chim. Sin., 2010, 26(2): 304-310. | |
18 | 朱元保, 颜流水, 曹祉祥, 等. 磁化水的物理化学性能[J]. 湖南大学学报, 1999, 26(1): 21-25. |
Zhu Y B, Yan L S, Cao Z X, et al. Physical and chemical properties of magnetized water[J]. Journal of Hunan University, 1999, 26(1): 21-25. | |
19 | 安燕, 刘云. 磁化水及其溶液表面性质的研究[J]. 贵州工业大学学报, 1998, (4): 103-106. |
An Y, Liu Y. Study on the surface properties of magnetized water and solution[J]. Journal of Guizhou University of Technology, 1998, (4): 103-106. | |
20 | 勾昱君, 刘中良, 刘耀民, 等. 磁场对冷表面上结霜过程影响的实验研究[J]. 工程热物理学报, 2009, 30(3): 465-467.Gou Y J, Liu Z L, Liu Y M, et al. The study of frost formation under magnetic field[J]. Journal of Engineering Thermophysics, 2009, 30(3): 465-467. |
21 | 单亮亮. 弱直流磁场作用下结霜的可视化研究[D]. 天津: 天津商业大学, 2018. |
Shan L L. Research on visualization of frosting under weak DC magnetic field[D]. Tianjin: Tianjin University of Commerce, 2018. | |
22 | He M. Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation[J]. Soft Matter, 2011, 7(8): 3993-4000. |
23 | Fatica N, Katz D L. Dropwise condensation[J]. Chemical Engineering Progress, 1949, 45(11): 661-674. |
24 | Hoke J L, Georgiadis J G, Jacobi A M. Effect of substrate wettability on frost properties[J]. Journal of Thermophysics and Heat Transfer, 2004, 18(2): 228-235. |
25 | 徐文骥, 宋金龙, 孙晶, 等. 铝基体超疏水表面的抗结冰结霜效果分析[J].低温工程, 2010, (6): 11-15. |
Xu W J, Song J L, Sun J, et al. Research in ice and frost repellency of superhydrophobic surfaces on aluminum[J]. Cryogenics, 2010, (6): 11-15. | |
26 | Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1994, 40: 546-551. |
27 | 吴晓敏, 王维城. 冷面结霜初始形态的理论分析[J]. 工程热物理学报, 2003, 24(2): 286-288. |
Wu X M, Wang W C. Theoretical analysis of initial behavior of frost formed on a cold surface[J]. Journal of Engineering Thermophysics, 2003, 24(2): 286-288. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[9] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[12] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[13] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[14] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[15] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||