化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1317-1325.DOI: 10.11949/0438-1157.20191021
收稿日期:
2019-09-09
修回日期:
2019-10-22
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
杨林军
作者简介:
孙宗康(1991—),男,博士研究生,基金资助:
Zongkang SUN(),Xiaodan ZHANG,Linjun YANG(),Shuai CHEN,Xin WU
Received:
2019-09-09
Revised:
2019-10-22
Online:
2020-03-05
Published:
2020-03-05
Contact:
Linjun YANG
摘要:
将化学团聚与湍流团聚技术耦合,实验研究了燃煤细颗粒物在化学与湍流团聚耦合作用下的团聚与脱除效果,以及颗粒物浓度、烟气温度、团聚液喷入量与烟气流速等因素对细颗粒物团聚与脱除效果的影响规律。结果表明,典型工况下化学-湍流耦合团聚能够进一步促进细颗粒物团聚长大以及静电除尘器对细颗粒物的脱除,其作用效果优于单独的化学与湍流团聚。随细颗粒物浓度的升高,团聚与脱除效率均逐渐下降,分别由49.2%与96.7%下降至35.3%与88.2%。随烟气温度与团聚液喷入量的增加,细颗粒物团聚与脱除效率均先升高后降低,并在180℃与12 L/h处达到最高值,团聚与脱除效率分别为44.7%与94.8%。随烟气流速的增加,细颗粒物团聚与脱除效率均逐渐升高,分别由30.5%与86.3%升高至50.2%与97.5%。
中图分类号:
孙宗康, 张笑丹, 杨林军, 陈帅, 吴新. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325.
Zongkang SUN, Xiaodan ZHANG, Linjun YANG, Shuai CHEN, Xin WU. Promoting the agglomeration and removal of coal-fired fine particles by coupling of chemical and turbulent agglomeration[J]. CIESC Journal, 2020, 71(3): 1317-1325.
1 | BP. BP Statistical review of world energy 2018[EB/OL]. [2018-07-30]. . |
2 | 滕吉文, 乔勇虎, 宋鹏汉. 我国煤炭需求、探查潜力与高效利用分析[J]. 地球物理学报, 2016, 59(12): 4633-4653. |
Teng J W, Qiao Y H, Song P H. Analysis of exploration, potential reserves and high efficient utilization of coal in China[J]. Chinese Journal of Geophysics, 2016, 59(12): 4633-4653. | |
3 | 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017: 281-283. |
National Bureau of Statistics of the People s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2017: 281-283. | |
4 | Yin L Q, Niu Z C, Chen X Q, et al. Chemical compositions of PM2.5 aerosol during haze periods in the mountainous city of Yong an, China[J]. J. Environ. Sci.,2012, 24: 1225–1233. |
5 | Fan Z, Pun V C, Chen X, et al. Personal exposure to fine particles (PM2.5) and respiratory inflammation of common residents in Hong Kong[J]. Environ. Res.,2018, 164: 24–31. |
6 | Li Y J, Wang J H, Ren B N, et al. The characteristics of atmospheric phthalates in Shanghai: a haze case study and human exposure assessment[J]. Atmos. Environ.,2018, 178: 80–86. |
7 | 徐杰英, 刘晶, 郑楚光. 燃烧源超细颗粒物的研究进展[J]. 煤炭转化, 2003, 26(4): 16-20. |
Xu J Y, Liu J, Zheng C G. Advance in the research of ultrafine particulate matter from combustion[J]. Coal Conversion, 2003, 26(4): 16-20. | |
8 | 岳勇, 陈雷, 姚强, 等. 燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究[J]. 中国电机工程学报, 2005, 25(18): 74-79. |
Yue Y, Chen L, Yao Q, et al. Experimental study on characteristics of particulate matter size distribution and trace elements enrichment in emission from a pulverized coal-fired boiler[J]. Proceedings of the CSEE, 2005, 25(18): 74-79. | |
9 | Pui Y H, Chen S C, Zuo Z L. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13: 1-26. |
10 | 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223. |
Xiong G L,Li S Q,Chen S, et al. Development of advanced electrostatic precipitation technologies for reducing PM2.5 emissions from coal-fired power plants[J]. Proceedings of the CSEE, 2015, 35(9): 2217-2223. | |
11 | 陈冬林, 吴康, 曾稀. 燃煤锅炉烟气除尘技术的现状及进展[J]. 环境工程, 2014, 32(9): 70-73. |
Chen D L, Wu K, Zeng X. Review on technology for dust removal from flue gas of coal-fired boilers[J]. Environmental Engineering, 2014, 32(9): 70-73. | |
12 | 李海英, 张春奇, 刘东. 细颗粒物PM2.5团聚除尘技术的研究进展[J]. 环境工程, 2018, 36(9): 93-99. |
Li H Y, Zhang C Q, Liu D. Research progress of PM2.5 agglomeration and removal technology[J]. Environmental Engineering, 2018, 36(9): 93-99. | |
13 | 程治良, 谭其祥, 李瑞恒, 等. 工业细粒物PM2.5预团聚及去除新技术研究进展[J]. 重庆理工大学学报(自然科学), 2016, 30(6): 75-82. |
Cheng Z L, Tan Q X, Li R H, et al. Review on pre-agglomeration and new removal methods of industrial fine particulate matter[J]. Journal of Chongqing University of Technology (Natural Science), 2016, 30(6): 75-82. | |
14 | 张光学, 朱颖杰, 周涛涛, 等. 喷雾对促进细颗粒物声波团聚的影响[J]. 化工学报, 2017, 68(3): 864-869. |
Zhang G X, Zhu Y J, Zhou T T, et al. Improve acoustic agglomeration of fine particles by droplet spray[J]. CIESC Journal, 2017, 68(3): 864-869. | |
15 | 颜金培, 陈立奇, 杨林军. 燃煤细颗粒在过饱和氛围下声波团聚脱除的实验研究[J]. 化工学报, 2014, 65(8): 3243-3249. |
Yan J P, Chen L Q, Yang L J. Agglomeration removal of fine particles at super-saturation steam by using acoustic wave[J]. CIESC Journal, 2014, 65(8): 3243-3249. | |
16 | 熊桂龙, 杨林军, 颜金培, 等. 用蒸汽相变脱除燃煤湿法脱硫净烟气中细颗粒物[J]. 化工学报, 2011, 62(10): 2932-2938. |
Xiong G L, Yang L J, Yan J P, et al. Removal of fine particles by heterogeneous condensation from wet-process desulfurized flue gas[J]. CIESC Journal, 2011, 62(10): 2932-2938. | |
17 | 吴建东, 刘乔, 王昊. 带绕流板的湍流管道内细颗粒物沉积实验[J]. 化工学报, 2018, 69: 15-19. |
Wu J D, Liu Q, Wang H. Experimental investigation of fine particle precipitation in rectangular duct with staggered baffles[J]. CIESC Journal, 2018, 69: 15-19. | |
18 | 李永旺, 吴新, 赵长遂, 等. 均匀磁场中磁种聚并脱除燃煤PM10实验研究[J]. 中国电机工程学报, 2007, 27(17): 23-28. |
Li Y W, Wu X, Zhao C S, et al. Experimental study on aggregation of PM10 from coal combustion by magnetic seeding in uniform magnetic field[J]. Proceedings of the CSEE, 2007, 27(17): 23-28. | |
19 | 刘勇, 赵汶, 刘瑞, 等. 化学团聚促进电除尘脱除PM2.5的实验研究[J]. 化工学报, 2014, 65(9): 3609-3616. |
Liu Y, Zhao W, Liu R, et al. Improving removal of PM2.5 by electrostatic precipitator with chemical agglomeration[J]. CIESC Journal, 2014, 65(9): 3609-3616. | |
20 | 胡斌, 刘勇, 杨春敏, 等. 化学团聚促进电除尘脱除烟气中PM2.5和SO3[J]. 化工学报, 2016, 67(9): 3902-3909. |
Hu B, Liu Y, Yang C M, et al. Simultaneous control of PM2.5 and SO3 by chemical agglomeration collaborative electrostatic precipitation[J]. CIESC Journal, 2016, 67(9): 3902-3909. | |
21 | 郭沂权, 赵永椿, 李高磊, 等. 300MW燃煤电站化学团聚强化飞灰细颗粒物排放控制的研究[J]. 中国电机工程学报, 2019, 39(3): 754-763. |
Guo Y Q, Zhao Y C, Li G L, et al. Research on emission characteristics of chemical agglomeration of fly ash fine particles from a 300MW coal-fired power plant boiler[J]. Proceedings of the CSEE, 2019, 39(3): 754-763. | |
22 | 陈冬林, 杨陈好, 吴康, 等. 烟气参数对细颗粒湍流聚并的影响[J]. 环境工程学报, 2017, 11(9): 5084-5090. |
Chen D L, Yang C H, Wu K, et al. Influences of turbulent agglomeration of fine particles under flue gas parameters[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 5084-5090. | |
23 | 孙德帅, 郭庆杰, 司崇殿. 气体射流作用下燃煤可吸入颗粒的团聚[J]. 过程工程学报, 2009, 9(3): 437-440. |
Sun D S, Guo Q J, Si C D. Agglomeration of inhalable particles in gas jet[J]. The Chinese Journal of Process Engineering, 2009, 9(3): 437-440. | |
24 | 章鹏飞, 米建春, 潘祖明. 烟气流速和装置元件角度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(10): 2714-2719. |
Zhang P F, Mi J C, Pan Z M. Influences of flue-gas velocity and device-element angle on fine particle amalgamation[J]. Proceedings of the CSEE, 2016, 36(10): 2714-2719. | |
25 | 章鹏飞, 米建春, 潘祖明. 装置元件排列间距和颗粒浓度对细颗粒湍流聚并的影响[J]. 中国电机工程学报, 2016, 36(6): 1625-1632. |
Zhang P F, Mi J C, Pan Z M. Influences of elemental arrangement and particle concentration on fine particle amalgamation[J]. Proceedings of the CSEE, 2016, 36(6): 1625-1632. | |
26 | Sun Z K, Yang L J, Shen A, et al. Improving the removal of fine particles from coal combustion in the effect of turbulent agglomeration enhanced by chemical spray[J]. Fuel,2018, 234: 558–566. |
27 | Ylätalo S, Kauppinen E, Hautanen J, et al. On the determination of electrostatic precipitator efficiency by differential mobility analyzer[J]. J. Aerosol. Sci., 1992, 23(Supplement 1): 795–798. |
28 | 靳星. 静电除尘器内细颗粒物脱除特性的技术基础研究[D]. 北京: 清华大学, 2013. |
Jin X. Research on the capture technology of fine particles in electrostatic precipitator[D]. Beijing: Tsinghua University, 2013. | |
29 | 赵永椿, 张军营, 魏凤, 等. 燃煤超细颗粒物团聚促进机制的实验研究[J]. 化工学报, 2007, 58(11): 2876-2881. |
Zhao Y C, Zhang J Y, Wei F, et al. Experimental study on agglomeration of submicron particles from coal combustion[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(11): 2876-2881. | |
30 | 刘加勋. 燃煤飞灰化学团聚实验研究及机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
Liu J X. Experimental study and mechanism analysis on particle spray agglomeration from coal combustion[D]. Harbin: Harbin Institute of Technology, 2008. | |
31 | 章澄昌, 周文贤. 大气气溶胶教程[M]. 北京: 气象出版社, 1995: 117-123. |
Zhang C C, Zhou W X. Aerosol Tutorial[M]. Beijing: Meteorlogy Press, 1995: 117-123. | |
32 | 杨振楠, 郭庆杰. 气固射流作用下可吸入燃煤飞灰颗粒的团聚[J]. 高校化学工程学报, 2011, 25(2): 71-75. |
Yang Z N, Guo Q J. Agglomeration of coal combustion fly ash inhalable particles in presence of gas-solid jet flow[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2): 71-75. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[3] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[4] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
[5] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[6] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[7] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[8] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[9] | 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538. |
[10] | 张浩, 徐惠斌, 高健, 刘帝宏, 周泽华. Geldart-D类湿颗粒倾斜落料行为及其强化[J]. 化工学报, 2023, 74(4): 1519-1527. |
[11] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[12] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
[13] | 李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570. |
[14] | 范怡平, 卢春喜. 离心力场-移动床耦合气固分离装备的研究进展[J]. 化工学报, 2023, 74(1): 157-169. |
[15] | 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||