化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1540-1553.DOI: 10.11949/0438-1157.20191503
收稿日期:
2019-12-12
修回日期:
2020-02-12
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
杨智
作者简介:
宋祺(1995—),男,硕士研究生,基金资助:
Qi SONG(),Zhi YANG(),Ying CHEN,Xianglong LUO,Jianyong CHEN,Yingzong LIANG
Received:
2019-12-12
Revised:
2020-02-12
Online:
2020-04-05
Published:
2020-04-05
Contact:
Zhi YANG
摘要:
在微流控技术中,微通道结构的优化设计是一种被动实现液滴精确调控的有效方法。为探究分散相入口、通道下游孔口以及二者共存模式下的通道结构变化对液滴生成特性的影响,采用VOF / CSF耦合level set的界面捕捉法对聚焦流微通道内的液滴生成开展了数值模拟研究。结果表明,当孔口为单一变量时,液滴生成周期和直径随孔口宽度呈近线性增大,且颈部宽度收缩率随孔口宽度的增大而不断减小。孔口的收缩有助于强化连续相Y方向的挤压和X方向的黏性剪切作用。当孔口宽度较小,聚焦作用较强时,液滴生成周期和直径整体上对分散相入口竖直和水平边锥形角的变化并不敏感;此时,孔口对连续相的聚焦效应主要影响液滴的生成特性。当孔口和分散相入口水平边锥形角θ2同步变化时,二者可协同影响液滴的生成。孔口宽度的增大削弱了孔口的聚焦作用,液滴挤压破裂时间在单个周期中的占比逐渐增大。此外,当孔口宽度较大时,液滴生成开始对θ2敏感,其周期和直径随θ2增大而增大,且液滴可从滴流向射流模式转变。
中图分类号:
宋祺, 杨智, 陈颖, 罗向龙, 陈健勇, 梁颖宗. 局部几何构型对聚焦流微通道内液滴生成特性的影响[J]. 化工学报, 2020, 71(4): 1540-1553.
Qi SONG, Zhi YANG, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Effect of local geometry on droplet formation in flow-focusing microchannel[J]. CIESC Journal, 2020, 71(4): 1540-1553.
图1 十字聚焦微通道二维几何结构(下角标c和d分别表示连续相和分散相)
Fig.1 Schematic diagram of 2D geometric structure of cross-focusing microchannel(subscripts c and d represent continuous and dispersed phase, respectively)
wori/μm | θ2/ (°) | t1 /ms | t2/ms | t3 /ms | (t2-t1)/ms | (t3-t2)/ms | (t3-t2)/t3 |
---|---|---|---|---|---|---|---|
50 | 0 | 0 | 1.24 | 1.693 | 1.24 | 0.453 | 26.757% |
20 | 0 | 1.195 | 1.621 | 1.195 | 0.426 | 26.280% | |
40 | 0 | 1.292 | 1.717 | 1.292 | 0.425 | 24.753% | |
75 | 0 | 0 | 1.815 | 2.686 | 1.815 | 0.871 | 32.427% |
20 | 0 | 1.68 | 2.459 | 1.68 | 0.779 | 31.679% | |
40 | 0 | 2.036 | 2.425 | 2.036 | 0.389 | 16.041% | |
100 | 0 | 0 | 2.12 | 3.865 | 2.12 | 1.745 | 45.148% |
20 | 0 | 1.892 | 3.606 | 1.892 | 1.714 | 47.532% | |
40 | — | — | — | — | — | — |
表1 不同通道构型下液滴生长与挤压破裂阶段所经历时间的对比
Table 1 Comparison of droplet growth and squeez fracture under different channel configurations
wori/μm | θ2/ (°) | t1 /ms | t2/ms | t3 /ms | (t2-t1)/ms | (t3-t2)/ms | (t3-t2)/t3 |
---|---|---|---|---|---|---|---|
50 | 0 | 0 | 1.24 | 1.693 | 1.24 | 0.453 | 26.757% |
20 | 0 | 1.195 | 1.621 | 1.195 | 0.426 | 26.280% | |
40 | 0 | 1.292 | 1.717 | 1.292 | 0.425 | 24.753% | |
75 | 0 | 0 | 1.815 | 2.686 | 1.815 | 0.871 | 32.427% |
20 | 0 | 1.68 | 2.459 | 1.68 | 0.779 | 31.679% | |
40 | 0 | 2.036 | 2.425 | 2.036 | 0.389 | 16.041% | |
100 | 0 | 0 | 2.12 | 3.865 | 2.12 | 1.745 | 45.148% |
20 | 0 | 1.892 | 3.606 | 1.892 | 1.714 | 47.532% | |
40 | — | — | — | — | — | — |
1 | 林炳承, 秦建华. 图解微流控芯片实验室[M].北京: 科学出版社, 2008: 473. |
Lin B C, Qin J H. Graphic Laboratory on a Microfluidic Chip [M]. Beijing: Science Press, 2008: 473. | |
2 | Chan E M, Alivisatos A P, Mathies R A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets[J]. Journal of the American Chemical Society, 2005, 127(40): 13854-13861. |
3 | Liu K, Ding H J, Liu J, et al. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device[J]. Langmuir, 2006, 22(22): 9453-9457. |
4 | Chen H, Zhang F, Fu S, et al. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials[J]. Advanced Materials, 2006, 18(23): 3089-3093. |
5 | Xu Q, Hashimoto M, Dang T T, et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery[J]. Small, 2009, 5(13): 1575-1581. |
6 | Frenz L, El Harrak A, Pauly M, et al. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles[J]. Angew Chem. Int. Ed. Engl., 2008, 47(36): 6817-6820. |
7 | Hung L H, Choi K M, Tseng W Y, et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis[J]. Lab Chip, 2006, 6(2): 174-178. |
8 | Hoájeong E, Chunákim K, Sangágo J. Microfluidics assisted synthesis of well-defined spherical polymeric microcapsules and their utilization as potential encapsulants[J]. Lab on a Chip, 2006, 6(6): 752-756. |
9 | Bardin D, Martz T D, Sheeran P S, et al. High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy[J]. Lab on a Chip, 2011, 11(23): 3990-3998. |
10 | Chen H, Chang X, Weng T, et al. A study of microemulsion systems for transdermal delivery of triptolide[J]. Journal of Controlled Release, 2004, 98(3): 427-436. |
11 | Dames P, Gleich B, Flemmer A, et al. Targeted delivery of magnetic aerosol droplets to the lung[J]. Nature Nanotechnology, 2007, 2(8): 495. |
12 | Ganan-Calvo A M, Montanero J M, Martin-Banderas L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Adv. Drug Deliv. Rev., 2013, 65(11/12): 1447-1469. |
13 | Hung L H, Teh S Y, Jester J, et al. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches[J]. Lab on a Chip, 2010, 10(14): 1820-1825. |
14 | Huebner A, Bratton D, Whyte G, et al. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays[J]. Lab Chip, 2009, 9(5): 692-698. |
15 | Hufnagel H, Huebner A, Gulch C, et al. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets[J]. Lab Chip, 2009, 9(11): 1576-1582. |
16 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Phys. Rev. Lett., 2001, 86(18): 4163-4166. |
17 | 魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64(2): 517-523. |
Wei L J, Zhu C Y, Fu T T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2): 517-523. | |
18 | 马朋成, 朱春英, 付涛涛, 等. 不对称T型微通道内液滴的无阻塞破裂动力学[J]. 化工学报, 2018, 69(11): 4633-4639. |
Ma P C, Zhu C Y, Fu T T, et al. Dynamics of droplet breakup with permanent tunnel in asymmetric microfluidic T-junction[J]. CIESC Journal, 2018, 69(11): 4633-4639. | |
19 | Zheng B, Tice J D, Roach L S, et al. A droplet‐based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction[J]. Angewandte Chemie International Edition, 2004, 43(19): 2508-2511. |
20 | 刘赵淼, 刘丽昆, 申峰. Y 型微通道两相流内部流动特性[J]. 力学学报, 2014, 46(2): 209-216. |
Liu Z M, Liu L K, Shen F. Two-phase flowcharacteristics in Y-junction microchannel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 209-216. | |
21 | 刘赵淼, 刘丽昆, 申峰. Y 型微通道中两相界面特性变化分析[J]. 机械工程学报, 2014, 50(8): 189-196. |
Liu Z M, Liu L K, Shen F. Numerical analysis on two-phase flow characteristics at convection microfluidic Y-junctions[J]. Journal of Mechanical Engineering, 2014, 50(8): 189-196. | |
22 | 马蕊, 付涛涛, 张沁丹, 等. Y聚焦型微通道内磁流体液滴的生成与调控[J]. 化工学报, 2018, 69(2): 602-610. |
Ma R, Fu T T, Zhang Q D, et al. Formation and manipulation of ferrofluid droplets in Y-shaped flow-focusing microchannel[J]. CIESC Journal, 2018, 69(2): 602-610. | |
23 | Dang T D, Kim Y H, Kim H G, et al. Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1308-1313. |
24 | 王维萌, 马一萍, 陈斌. 十字交叉微通道内微液滴生成过程的数值模拟[J]. 化工学报, 2015, 66(5): 1633-1641. |
Wang W M, Ma Y P, Chen B. Numerical simulation of droplet generation in crossing micro-channel[J]. CIESC Journal, 2015, 66(5): 1633-1641. | |
25 | 张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2): 504-511. |
Zhang Q D, Fu T T, Zhu C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2): 504-511. | |
26 | 张翀, 付涛涛, 姜韶堃, 等. 聚焦十字型微通道内高黏流体中气泡生成动力学[J]. 化工学报, 2018, 69(2): 650-654. |
Zhang C, Fu T T, Jiang S K, et al. Bubble forming dynamics of highly viscous fluids in microfluidic flow-focusing cross channel device[J]. CIESC Journal, 2018, 69(2): 650-654. | |
27 | Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351. |
28 | 兰文杰, 李少伟, 徐建鸿, 等. 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报, 2013, 64(2): 476-483. |
Lan W J, Li S W, Xu J H, et al. Liquid- liquid two-phase viscous flow in coaxial microfluidic device[J]. CIESC Journal, 2013, 64(2): 476-483. | |
29 | Peng L, Yang M, Guo S S, et al. The effect of interfacial tension on droplet formation in flow-focusing microfluidic device[J]. Biomed Microdevices, 2011, 13(3): 559-564. |
30 | Wu L Y, Liu X D, Zhao Y J, et al. Role of local geometry on droplet formation in axisymmetric microfluidics[J]. Chemical Engineering Science, 2017, 163: 56-67. |
31 | Liu H, Zhang Y. Droplet formation in microfluidic cross-junctions[J]. Physics of Fluids, 2011, 23(8): 082101. |
32 | Tan Y C, Cristini V, Lee A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 350-356. |
33 | Lashkaripour A, Abouei M A, Rasouli M, et al. Numerical study of droplet generation process in a microfluidic flow focusing[J]. Journal of Computational Applied Mechanics, 2015, 46(2): 167-175. |
34 | Gupta A, Matharoo H S, Makkar D, et al. Droplet formation via squeezing mechanism in a microfluidic flow-focusing device[J]. Computers & Fluids, 2014, 100: 218-226. |
35 | Xiong Q Q, Chen Z, Li S W, et al. Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel[J]. Chemical Engineering Science, 2018, 185: 157-167. |
36 | Mak S Y, Chao Y, Shum H C. The dripping-to-jetting transition in a co-axial flow of aqueous two-phase systems with low interfacial tension[J]. RSC Advances, 2017, 7(6): 3287-3292. |
37 | Chen Y, Wu L, Zhang L. Dynamic behaviors of double emulsion formation in a flow-focusing device[J]. International Journal of Heat and Mass Transfer, 2015, 82: 42-50. |
38 | Li Y, Wu P, Zhang H, et al. The instability of monodisperse bubbles passing through a confined geometry[J]. Applied Physics Letters, 2014, 105(20): 201605. |
39 | Zinchenko A Z, Rother M A, Davis R H. Cusping, capture, and breakup of interacting drops by a curvatureless boundary-integral algorithm[J]. Journal of Fluid Mechanics, 1999, 391: 249-292. |
40 | Cristini V, Bławzdziewicz J, Loewenberg M. Drop breakup in three-dimensional viscous flows[J]. Physics of Fluids, 1998, 10(8): 1781-1783. |
41 | Castrejón-Pita J, Morrison N, Harlen O, et al. Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode[J]. Physical Review E, 2011, 83(3): 036306. |
42 | Shin S, Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[J]. Journal of Computational Physics, 2002, 180(2): 427-470. |
43 | Yabe T, Xiao F, Utsumi T. The constrained interpolation profile method for multiphase analysis[J]. Journal of Computational Physics, 2001, 169(2): 556-593. |
44 | Osher S, Fedkiw R P. Level set methods: an overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2): 463-502. |
45 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
46 | Cristini V, Tan Y C. Theory and numerical simulation of droplet dynamics in complex flows—a review[J]. Lab on a Chip, 2004, 4(4): 257-264. |
47 | Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. |
48 | Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 567-603. |
49 | Renardy Y, Renardy M. Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method[J]. Journal of Computational Physics, 2002, 183(2): 400-421. |
50 | Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science [M]. Cambridge: Cambridge University Press, 1999. |
51 | Osher S, Fedkiw R, Piechor K. Level set methods and dynamic implicit surfaces[J]. Appl. Mech. Rev., 2004, 57(3): B15-B15. |
52 | Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337. |
53 | Chakraborty I, Biswas G, Ghoshdastidar P S. Bubble generation in quiescent and co-flowing liquids[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4673-4688. |
54 | Sun D, Tao W. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(4): 645-655. |
55 | Li S, Chen R, Wang H, et al. Numerical investigation of the moving liquid column coalescing with a droplet in triangular microchannels using CLSVOF method[J]. Science Bulletin, 2015, 60(22): 1911-1926. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[15] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||