化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1528-1539.DOI: 10.11949/0438-1157.20191207
收稿日期:
2019-10-22
修回日期:
2020-01-29
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
王淑彦
作者简介:
田瑞超(1993—),女,博士研究生, 基金资助:
Ruichao TIAN(),Shuyan WANG(),Baoli SHAO,Haoting LI,Yulin WANG
Received:
2019-10-22
Revised:
2020-01-29
Online:
2020-04-05
Published:
2020-04-05
Contact:
Shuyan WANG
摘要:
在颗粒动理学理论(KTGF)的基础上,通过引入表征粗糙颗粒摩擦和切向非弹性的切向弹性恢复系数β,以及综合反映颗粒平动和旋转运动脉动强度的颗粒拟总温e0,结合输运理论建立了考虑颗粒旋转作用的颗粒相质量、动量和颗粒拟总温守恒方程。并在求解了同时具有平动和旋转运动的能量耗散和颗粒相应力等参数的前提下提出了颗粒相压力、剪切黏度和能量耗散等本构关系式以及边界条件,最终得出了粗糙颗粒动理学理论(KTRS)。通过改变液相的流变特性,分析了幂律流变模型中流动指数n和稠度系数Kl对流化床内流固两相流动特性的影响,模拟结果表明:随着流动指数和稠度系数的增大,液相湍动能耗散率逐渐增大,而颗粒相压力逐渐减小,颗粒旋转先增大后减小。
中图分类号:
田瑞超, 王淑彦, 邵宝力, 李好婷, 王玉琳. 基于粗糙颗粒动理学流化床内颗粒与幂律流体两相流动特性的数值模拟研究[J]. 化工学报, 2020, 71(4): 1528-1539.
Ruichao TIAN, Shuyan WANG, Baoli SHAO, Haoting LI, Yulin WANG. Numerical simulation of hydrodynamic characteristics of particles and power-law fluid in fluidized beds using kinetic theory of rough spheres[J]. CIESC Journal, 2020, 71(4): 1528-1539.
参数 | 文献[ 实验值 | 本文对应的模拟值 | 文献[ | 本文对应的模拟值 |
---|---|---|---|---|
颗粒密度/(kg/m3) | 2258 | 2258 | 8030 | 8030 |
颗粒直径/m | 0.004~0.005 | 0.0046 | 0.003 | 0.003 |
液体密度/(kg/m3) | — | 1001 | — | 1000 |
液体流动指数 | 0.82 | 0.82 | 1 | |
液体稠度系数/(Pa·sn) | 0.013 | 0.013 | — | 1×10-3 |
床高/m | 2.0 | 2.0 | 0.6 | 0.6 |
床宽/m | 0.09 | 0.09 | 0.08 | 0.08 |
初始颗粒浓度 | 0.578 | 0.578 | 0.6 | 0.6 |
初始床层高度/m | 0.12 | 0.12 | 0.24 | 0.24 |
恢复系数 | — | 0.95 | — | 0.95 |
壁面恢复系数 | — | 0.9 | — | 0.9 |
切向恢复系数 | — | -0.2 | — | -0.2 |
壁面摩擦系数 | — | 0.2 | — | 0.2 |
表1 文献[32,33]实验及本文模拟参数
Table 1 Parameters used in simulations and experiments by Broniarz-Press et al.[32] and Ehsani et al.[33]
参数 | 文献[ 实验值 | 本文对应的模拟值 | 文献[ | 本文对应的模拟值 |
---|---|---|---|---|
颗粒密度/(kg/m3) | 2258 | 2258 | 8030 | 8030 |
颗粒直径/m | 0.004~0.005 | 0.0046 | 0.003 | 0.003 |
液体密度/(kg/m3) | — | 1001 | — | 1000 |
液体流动指数 | 0.82 | 0.82 | 1 | |
液体稠度系数/(Pa·sn) | 0.013 | 0.013 | — | 1×10-3 |
床高/m | 2.0 | 2.0 | 0.6 | 0.6 |
床宽/m | 0.09 | 0.09 | 0.08 | 0.08 |
初始颗粒浓度 | 0.578 | 0.578 | 0.6 | 0.6 |
初始床层高度/m | 0.12 | 0.12 | 0.24 | 0.24 |
恢复系数 | — | 0.95 | — | 0.95 |
壁面恢复系数 | — | 0.9 | — | 0.9 |
切向恢复系数 | — | -0.2 | — | -0.2 |
壁面摩擦系数 | — | 0.2 | — | 0.2 |
图9 不同稠度系数下流化床内瞬时颗粒浓度分布图及速度矢量图
Fig.9 Distributions of particle concentration and particle velocity in fluidized bed at different consistency coefficients
图13 不同稠度系数下时均液相湍动能耗散率随颗粒浓度的变化
Fig.13 Time-averaged turbulence dissipation as a function of particle concentration at different consistency coefficients
1 | Kato Y, Ishimaru A, Kadone H, et al. Characteristics of bubble column with a simultaneous gas-liquid injection nozzle[J]. Kagaku Kogaku Ronbunshu, 1980, 6(6): 614-620. |
2 | Muroyama K, Fukuma M, Yasunishi A. Wall-to-bed heat transfer in liquid-solid and gas-liquid-solid fluidized beds(Ⅰ): Liquid-solid fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1986, 64(3): 399-408. |
3 | Kang Y, Kim S D. Heat transfer characteristics in liquid-fluidized beds[J]. Korean Chemical Engineering Research, 1987, 25(1): 81-81. |
4 | Liang W, Yu Z, Jin Y, et al. Synthesis of linear alkylbenzene in a liquid-solid circulating fluidized bed reactor[J]. Journal of Chemical Technology & Biotechnology, 1995, 62(1): 98-102. |
5 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62. |
Li H Z, Kwauk M S. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62. | |
6 | 马红钦, 朱慧铭, 谭欣, 等. 脱硅中液固循环流化床清洁传热[J]. 化工学报, 2003, 54(3): 288-293. |
Ma H Q, Zhu H M, Tan X, et al. Cleaning heat transfer of desiliconization heat exchange with liquid-solid fluidized bed[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(3): 288-293. | |
7 | Lan Q, Zhu J X, Bassi A S, et al. Continuous protein recovery using a liquid-solid circulating fluidized bed ion exchange system: modelling and experimental studies[J]. The Canadian Journal of Chemical Engineering, 2000, 78(5): 858-866. |
8 | Reddy R K, Sathe M J, Joshi J B, et al. Recent developments in experimental (PIV) and numerical (DNS) investigation of solid-liquid fluidized beds[J]. Chemical Engineering Science, 2013, 92: 1-12. |
9 | Chen Y M, Jang C S, Cai P, et al. On the formation and disintegration of particle clusters in a liquid-solid transport bed[J]. Chemical Engineering Science, 1991, 46(9): 2253-2268. |
10 | Di Felice R. Hydrodynamics of liquid fluidisation[J]. Chemical Engineering Science, 1995, 50(8): 1213-1245. |
11 | Kmieć A. Particle distributions and dynamics of particle movement in solid-liquid fluidized beds[J]. The Chemical Engineering Journal, 1978, 15(1): 1-12. |
12 | Dadashi A, Zhu J J, Zhang C. A computational fluid dynamics study on the flow field in a liquid-solid circulating fluidized bed riser[J]. Powder Technology, 2014, 260: 52-58. |
13 | 刘国栋, 沈志恒, 王帅, 等. 液固流化床中颗粒流动特性的数值模拟[J]. 哈尔滨工业大学学报, 2010, 42(7): 1108-1111. |
Liu G D, Shen Z H, Wang S, et al. Simulation of hydrodynamics of particles in a liquid-solid fluidized bed[J]. Journal of Harbin Institute of Technology, 2010, 42(7): 1108-1111. | |
14 | Ehsani M, Movahedirad S, Shahhosseini S. The effect of particle properties on the heat transfer characteristics of a liquid-solid fluidized bed heat exchanger[J]. International Journal of Thermal Sciences, 2016, 102: 111-121. |
15 | 王勤辉, 杨秋辉, 吴学成, 等. 多相流中颗粒旋转运动特性的研究进展[J]. 化工学报, 2011, 62(9): 2381-2390. |
Wang Q H, Yang Q H, Wu X C, et al. Research progress of particle rotation characteristics in multi-phase flows[J]. CIESC Journal, 2011, 62(9): 2381-2390. | |
16 | Torobin L B, Gauvin W H. Fundamental aspects of solids-gas flow(Ⅳ): The effects of particle rotation, roughness and shape[J]. The Canadian Journal of Chemical Engineering, 1960, 38(5): 142-153. |
17 | Best J L. The influence of particle rotation on wake stability at particle Reynolds numbers, ReP<300—implications for turbulence modulation in two-phase flows[J]. International Journal of Multiphase Flow, 1998, 24(5): 693-720. |
18 | 由长福, 祁海鹰, 徐旭常. 煤粉颗粒所受Magnus力的数值模拟[J]. 工程热物理学报, 2001, 22(5): 625-628. |
You C F, Qi H Y, Xu X C. Numerical simulation of Magnus lift on a coal particle[J]. Journal of Engineering Thermophysics, 2001, 22(5): 625-628. | |
19 | Kajishima T. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 721-728. |
20 | Chhabra R P. Bubbles, Drops, and Particles In Non-Newtonian Fluids[M]. Boca Raton:CRC Press, 2006. |
21 | Patel S K, Majumder S K. Interfacial stress in non-Newtonian flow through packed bed[J]. Powder Technology, 2011, 211(1): 127-134. |
22 | de Castro A R, Radilla G. Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer s law and Ergun s equation[J]. Advances in Water Resources, 2017, 100: 35-47. |
23 | Qi Z, Kuang S, Rong L, et al. Lattice Boltzmann investigation of the wake effect on the interaction between particle and power-law fluid flow[J]. Powder Technology, 2018, 326: 208-221. |
24 | Goldshtein A, Shapiro M. Mechanics of collisional motion of granular materials(Ⅰ): General hydrodynamic equations[J]. Journal of Fluid Mechanics, 1995, 282: 75-114. |
25 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. London: Academic Press, 1994. |
26 | Chapman S, Cowling T G. The Mathematical Theory of Non-Uniform Gases[M]. 3rded. Cambridge: Cambridge University Press, 1970. |
27 | Lun C K K. Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres[J]. Journal of Fluid Mechanics, 1991, 233: 539-559. |
28 | Benyahia S, Syamlal M, Brien T J O. Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe[J]. Powder Technology, 2005, 156(2/3): 62-72. |
29 | Wilcox D C. Turbulence Modeling for CFD[M]. California: DCW Industries, 1993. |
30 | Kemblowski Z, Dziubinski M, Seck J. Flow of non-Newtonian fluids through granular media[J]. Advances in Transport Processes, 1989, 5: 117-175. |
31 | Jenkins J T, Louge M Y. On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall[J]. Physics of Fluids, 1997, 9(10): 2835-2840. |
32 | Broniarz-Press L, Agacinski P, Rozanski J. Shear-thinning fluids flow in fixed and fluidised beds[J]. International Journal of Multiphase Flow, 2007, 33(6): 675-689. |
33 | Ehsani M, Movahedirad S, Shahhosseini S, et al. Effects of restitution and specularity coefficients on solid-liquid fluidized bed hydrodynamics[J]. Chemical Engineering & Technology, 2015, 38(10): 1827-1836. |
34 | Subbarao D. A model for cluster size in risers[J]. Powder Technology, 2010, 199(1): 48-54. |
35 | Harris A T, Davidson J F, Thorpe R B. The prediction of particle cluster properties in the near wall region of a vertical riser[J]. Powder Technology, 2002, 127(2): 128-143. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[4] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[9] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[12] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[13] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||