化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1627-1636.DOI: 10.11949/0438-1157.20191160
收稿日期:
2019-10-10
修回日期:
2019-11-24
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
王蕊欣
作者简介:
刘叶峰(1988—),女,博士研究生,基金资助:
Yefeng LIU(),Peng ZUO,Ruiqi LI,Weizhou JIAO,Ruixin WANG()
Received:
2019-10-10
Revised:
2019-11-24
Online:
2020-04-05
Published:
2020-04-05
Contact:
Ruixin WANG
摘要:
首先采用改进的Hummers法制备氧化石墨烯(GO),用3-氨丙基三甲氧基硅氧烷(KH540)对GO进行表面改性,制得氨基改性氧化石墨烯NH2-GO。然后,通过γ-(2,3-环氧丙基) 三甲氧基硅烷对单缺位的Dawson型磷钨酸盐K10[α-P2W17O61]·20H2O(P2W17)进行环氧基改性,制得环氧基改性的EPO-P2W17。最后,借助NH2-GO与EPO-P2W17之间的席夫碱反应实现P2W17在GO上的共价固载,制得复合催化剂P2W17/GO。采用FT-IR、UV-Vis、TG、XPS、TEM等对复合材料的结构和组成进行了表征。以四氢噻吩(THT)作为催化评价的对象,初步考察了P2W17/GO的催化氧化活性。实验结果表明,共价负载在GO上的P2W17分散性良好,且复合催化剂P2W17/GO对THT表现出良好的催化活性和高的选择性。较小的P2W17/GO用量(0.02 g)下,以H2O2为氧化剂,反应75 min,THT转化率达100%;相对于EPO-P2W17,其催化活性提高了1.7倍;其催化H2O2氧化THT的过程符合准一级动力学模型。此外,该催化剂具有良好的重复使用性。
中图分类号:
刘叶峰, 左鹏, 李瑞琪, 焦纬洲, 王蕊欣. 杂多酸的共价负载及其对四氢噻吩氧化性能研究[J]. 化工学报, 2020, 71(4): 1627-1636.
Yefeng LIU, Peng ZUO, Ruiqi LI, Weizhou JIAO, Ruixin WANG. Covalently supported polyoxometalate and its catalytic oxidative desulfurization of tetrahydrothiophene[J]. CIESC Journal, 2020, 71(4): 1627-1636.
图3 P2W17、EPO-P2W17、新制备P2W17/GO和回收的P2W17/GO的紫外-可见漫反射光谱图
Fig.3 UV-Vis diffuse reflectance spectra of P2W17,EPO-P2W17,freshly prepared P2W17/GO and recovered P2W17/GO
图7 不同体系催化氧化THT的曲线图(a),伪一级动力学曲线(b),P2W17/GO催化氧化THT过程的HPLC图(c)
Fig.7 THT oxidation conversion as functions of reaction time curve with different catalytic systems(a); pseudo-first-order kinetic curves(b); HPLC chromatograms of oxidation process of THT by P2W17/GO (c)
图9 P2W17/GO不同用量下THT的催化氧化曲线(a)和伪一级动力学曲线(b)
Fig.9 Catalytic oxidation curves of THT different dosages under P2W17/GO(a) and pseudo-first-order kinetic curves(b)
1 |
Hao L D, Hurlock M J, Li X Y, et al. Efficient oxidative desulfurization using a mesoporous Zr-based MOF[J]. Catal. Today, DOI: 10.1016/j.cattod. 2019.04.012.
DOI |
2 | Ahmad I, Rehan M, Balkhyour M, et al. Review of environmental pollution and health risks at motor vehicle repair workshops challenges and perspectives for Saudi Arabia[J]. Int. J. Agric. Environ. Res., 2016, 2: 1-22. |
3 | Wang J Y, Zhang L H, Sun Y L, et al. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids[J]. Fuel Process Technol., 2018, 177: 81-88. |
4 | Lu H Y, Li P C, Deng C L, et al. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs)[J]. Chem. Commun., 2015, 51: 10703-10706. |
5 | Zhang M, Zhu W S, Xun S H, et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids[J]. Chem. Eng. J., 2011, 220: 328-336. |
6 | Shi Y W, Liu G Z, Wang L, et al. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt[J]. Chem. Eng. J., 2015, 259: 771-778. |
7 | Xiong J, Zhu W S, Li H P, et al. Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels[J]. J. Mater. Chem. A, 2015, 3: 12738-12747. |
8 | Park J G, Ko C H, Yi K B, et al. Reactive adsorption of sulfur compounds in diesel on nickel supported on mesoporous silica[J]. Appl. Catal. B Environ., 2008, 81: 244-250. |
9 | Dharaskar S A, Wasewar K L, Varma M N, et al. Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel[J]. Fuel Process Technol., 2014, 123: 1-10. |
10 | Kranpour E, Azizian S. Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions[J]. Fuel, 2014, 137: 36-40. |
11 | Chen Y, Song H Y, Lu Y Z, et al. Unified catalytic oxidation-adsorption desulfurization process using cumene hydroperoxide as oxidant and vanadate based polyionic liquid as catalyst and sorbent[J]. Ind. Eng. Chem. Res., 2016, 55 (39): 10394-10403. |
12 | Xiao J, Wu L M, Wu Y, et al. Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide[J]. Appl. Energy., 2014, 113: 78-85. |
13 | Juliao D, Gomes A C, Pillinger M, et al. Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101(Cr) encapsulated) conditions[J]. Fuel Process Technol., 2015, 131: 78-86. |
14 | Juliao D, Mirante F, Ribeiro S O, et al. Deep oxidative desulfurization of diesel fuels using homogeneous and SBA-15-supported peroxophosphotungstate catalysts[J]. Fuel, 2019, 241: 616-624. |
15 | Ghubayr R, Nuttall C, Hodgkiss S, et al. Oxidative desulfurization of model diesel fuel catalyzed by carbonsupported heteropoly acids[J]. Appl. Catal. B: Environ., 2019, 253: 309-316. |
16 | Rezvani M A, Khandan S, Sabahi N, et al. Deep oxidative desulfurization of gas oil based on sandwich-type polysilicotungstate supported β-cyclodextrin composite as an efficient heterogeneous catalyst[J]. Chinese J. Chem. Eng., 2019, 27(10): 2418-2426. |
17 | Shen L J, Lei G C, Fang Y X, et al. Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization[J]. Chem. Commun., 2018, 54: 2475-2478. |
18 | Maciuca A L, Dumitriu E, Fajula F, et al. Mild oxidation of tetrahydrothiophene to sulfolane over V-, Mo- and W-containing layered double hydroxides[J]. Appl. Catal. A-Gen., 2008, 338(1/2): 1-8. |
19 | Li S W, Li J R, Gao Y, et al. Metal modified heteropolyacid incorporated into porous materials for a highly oxidative desulfurization of DBT under molecular oxygen[J]. Fuel, 2017, 197: 551-561. |
20 | Liu Y Y, Leus K, Sun Z C, et al. Catalytic oxidative desulfurization of model and real diesel over a molybdenum anchored metal-organic framework[J]. Micropor. Mesopor. Mat., 2019, 277: 245-252. |
21 | Gao M, Zhang G, Tian M, et al. Oxidative desulfurization of dibenzothiophene by central metal ions of chlorophthalocyanines-tetracarboxyl complexes[J]. Inorg. Chim. Acta, 2019, 485: 58-63. |
22 | Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions[J]. Chem. Rev., 1998, 98: 171-198. |
23 | Zheng H, Wang C G, Zhang X, et al. Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions[J]. Appl. Catal. B-Environ., 2018, 234: 79-89. |
24 | Wu K H, Chang Y C, Wang J C. Preparation of polyoxometalate-doped aminosilane-modifed silicate hybrid as a new barrier of chem-bio toxicant[J]. J. Inorg. Biochem., 2019, 199: 110788. |
25 | Narkhede N, Uttam B, Rao C P. Inorganic-organic covalent hybrid of polyoxometalate-calixarene: synthesis,characterization and enzyme mimetic activity[J]. Inorg. Chim. Acta, 2018, 483: 337-342. |
26 | Zhu S H, Cen Y L, Yang M, et al. Probing the intrinsic active sites of modified graphene oxide for aerobic benzylic alcohol oxidation[J]. Appl. Catal. B: Environ., 2017, 211: 89-97. |
27 | Vadivel S, Vanitha M, Muthukrishnaraj A, et al. Graphene oxide-BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes[J]. J. Water Process Eng., 2014, 1: 17-26. |
28 | Nomiya K, Torii H, Nomura K, et al. Synthesis and characterization of a monoruthenium(Ⅲ)-substituted Dawson polyoxotungstate derived by Br2 oxidation of the 1∶2 complex of ruthenium(Ⅱ) and [α2-P2W17O61]10-. The reactivity of cis-[RuCl2(DMSO)4] as a ruthenium source[J]. J. Chem. Soc. Dalton Trans., 2001, (9): 1506-1512. |
29 | Sun Z X, Li F Y, Xu L, et al. Effects of Dawson-type tungstophosphate on photoelectrochemical responses of cadmium sulfide composite film[J]. J. Phys. Chem. C, 2012, 116(10): 6420-6426. |
30 | Rezvani M A, Miri O F. Synthesis and characterization of PWMn/NiO/PAN nanosphere composite with superior catalytic activity for oxidative desulfurization of real fuel[J]. Chem. Eng. J., 2019, 369: 775-783. |
31 | Ribeiro S, Barbosa A D S, Gomes A C, et al. Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101[J]. Fuel Process Technol., 2013, 116: 350-357. |
32 | Garcia-gutierrez J L, Laredo G C, Garcia-gutierrez P, et al. Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide[J]. Fuel, 2014, 138: 118-125. |
33 | Xiao Y, Chen D, Ma N, et al. Covalent immobilization of a polyoxometalate in a porous polymer matrix: a heterogeneous catalyst towards sustainability[J]. RSC Adv., 2013, 3: 21544-21551. |
34 | Zhang M, Zhu W S, Xun S H, et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids[J]. Chem. Eng. J., 2013, 220(6): 328-336. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||