化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3839-3848.DOI: 10.11949/0438-1157.20200318
• 过程安全 • 上一篇
收稿日期:
2020-03-26
修回日期:
2020-05-28
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
陈国明
作者简介:
杨冬冬(1991—),男,博士研究生,基金资助:
Dongdong YANG(),Guoming CHEN(),Yuan ZHU,Jihao SHI
Received:
2020-03-26
Revised:
2020-05-28
Online:
2020-08-05
Published:
2020-08-05
Contact:
Guoming CHEN
摘要:
综合考虑受灾人员的应急疏散行为与泄漏气体积聚状态的时空变化,结合剂量响应模型提出海洋平台硫化氢泄漏中毒后果动态评估方法。应用所提出的方法对假想的海洋平台硫化氢泄漏事故后果进行评估,事故场景中考虑紧急关断系统(ESD)与放空系统对泄漏速率的影响,结合应急响应时序建立应急撤离时间模型。将基于动态评估方法得出的结果与基于静态评估方法、半动态评估方法得出的结果进行对比。基于静态评估方法、半动态评估方法与动态评估方法所得作业人员硫化氢吸入剂量分别为1.062×105、7.230×104和6.020×104,对应的死亡率分别为5.396×10-2、2.848×10-3和4.571×10-4。对比结果表明所提出的动态评估方法更细致地考虑了事故场景中的动态因素,能有效提高事故后果预测的准确度。。
中图分类号:
杨冬冬, 陈国明, 朱渊, 师吉浩. 海洋平台泄漏硫化氢中毒事故后果动态评估[J]. 化工学报, 2020, 71(8): 3839-3848.
Dongdong YANG, Guoming CHEN, Yuan ZHU, Jihao SHI. Dynamic assessment of consequences for poisoning accidents caused by H2S release on offshore platforms[J]. CIESC Journal, 2020, 71(8): 3839-3848.
气体成分 | 体积分数/% |
---|---|
甲烷 | 27 |
乙烷 | 33 |
丙烷 | 15 |
戊烷 | 23 |
二氧化碳 | 1 |
硫化氢 | 1 |
表1 泄漏气体成分及含量
Table 1 Composition and content of released gas
气体成分 | 体积分数/% |
---|---|
甲烷 | 27 |
乙烷 | 33 |
丙烷 | 15 |
戊烷 | 23 |
二氧化碳 | 1 |
硫化氢 | 1 |
平地 | 上楼梯 | 下楼梯 |
---|---|---|
1.30 m/s | 0.86 m/s | 0.63 m/s |
表2 作业人员移动速度
Table 2 Moving speed of the operator
平地 | 上楼梯 | 下楼梯 |
---|---|---|
1.30 m/s | 0.86 m/s | 0.63 m/s |
评估方法 | 硫化氢吸入剂量(D) | 死亡率(P) |
---|---|---|
静态评估 | 1.062×105 | 5.396×10-2 |
半动态评估 | 7.230×104 | 2.848×10-3 |
动态评估 | 6.020×104 | 4.571×10-4 |
表3 硫化氢吸入剂量与死亡率
Table 3 Inhalation dose of hydrogen sulfide and the corresponding mortality
评估方法 | 硫化氢吸入剂量(D) | 死亡率(P) |
---|---|---|
静态评估 | 1.062×105 | 5.396×10-2 |
半动态评估 | 7.230×104 | 2.848×10-3 |
动态评估 | 6.020×104 | 4.571×10-4 |
1 | Dadashzadeh M, Abbassi R, Khan F, et al. Explosion modeling and analysis of BP deepwater horizon accident[J]. Safety Science, 2013, 57(8): 150-160. |
2 | Paik J K, Czujko J, Kim B J, et al. Quantitative assessment of hydrocarbon explosion and fire risks in offshore installations[J]. Marine Structures, 2011, 24(2): 73-96. |
3 | Li X H, Chen G M, Zhu H W, et al. Gas dispersion and deflagration above sea from subsea release and its impact on offshore platform[J]. Ocean Engineering, 2018, 163: 157-168. |
4 | Kashi E, Mirzaei F, Mirzaei F. Analysis of gas dispersion and ventilation within a comprehensive CAD model of an offshore platform via computational fluid dynamics[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 125-133. |
5 | 刘康, 陈国明, 魏超南. 浮式生产系统泄漏天然气扩散规律与危险区域[J]. 石油学报, 2015, 36(8): 1018-1028. |
Liu K, Chen G M, Wei C N. Combustible gas diffusion law and hazardous area of FPSO[J]. Acta Petrolei Sinica, 2015, 36(8): 1018-1028. | |
6 | Hansen O R, Gavelli F, Davis S G, et al. Equivalent cloud methods used for explosion risk and consequence studies[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(3): 511-527. |
7 | Jin Y L, Jang B S. Probabilistic explosion risk analysis for offshore topside process area. Part II: Development of gas cloud multivariate frequency distribution (MVFD)[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 159-168. |
8 | 杨冬冬, 陈国明, 师吉浩. 海洋平台井喷含硫天然气扩散危险区域研究[J]. 中国安全生产科学技术, 2017, 13(8): 114-120. |
Yang D D, Chen G M, Shi J H. Research on dangerous region of H2S-containing natural gas diffusion resulting from offshore platform blowout[J]. Journal of Safety Science and Technology, 2017, 13(8): 114-120. | |
9 | 朱渊, 陈国明. 海洋平台密集作业空间内H2S扩散分析[J]. 安全与环境学报, 2009, 9(6): 140-143. |
Zhu Y, Chen G M. Analysis of H2S dispersion in the congested working environments of offshore platform[J]. Journal of Safety and Environment, 2009, 9(6): 140-143. | |
10 | 邓海发, 陈国明, 朱渊, 等. 海洋钻井平台井喷硫化氢扩散规律研究[J]. 安全与环境学报, 2010, 10(5): 177-180. |
Deng H F, Chen G M, Zhu Y, et al. Study on H2S dispersion from well blowout in offshore drilling platform[J]. Journal of Safety and Environment, 2010, 10(5): 177-180. | |
11 | 刘振翼, 张应安, 钱新明, 等. 酸性气田井喷点火有效空间范围数字模拟[J]. 石油学报, 2009, 30(4): 621-624. |
Liu Z Y, Zhang Y A, Qian X M, et al. Numerical simulation on available ignition range of well blowout in sour gas field[J]. Acta Petrolei Sinica, 2009, 30(4): 621-624. | |
12 | 邓海发, 陈国明, 朱渊, 等. 复杂地形条件下气体泄漏扩散规律仿真与试验[J]. 中国石油大学学报(自然科学版), 2012, 36(1): 122-126. |
Deng H F, Chen G M, Zhu Y, et al. Simulation and experiment of gas leakage and dispersion in complex topography[J]. Journal of China University of Petroleum, 2012, 36(1): 122-126. | |
13 | Zhang J W, Lei D, Feng W X. An approach for estimating toxic releases of H2S-containing natural gas[J]. Journal of Hazardous Materials, 2014, 264(2): 350-362. |
14 | 朱渊, 陈国明, 刘德绪. 复杂地形天然气净化厂脱硫装置泄漏事故模拟及危害评价[J]. 化工学报, 2010, 61(10): 2758-2764. |
Zhu Y, Chen G M, Liu D X. Simulation and assessment on leakage hazard from gas sweetening unit of sour gas processing plant in complex terrain[J]. CIESC Journal, 2010, 61(10): 2758-2764. | |
15 | 章博, 王磊, 王志刚. 炼油装置有害气体泄漏区域风险等级划分[J]. 中国石油大学学报(自然科学版), 2015, 39(5): 144-149. |
Zhang B, Wang L, Wang Z G. Area risk level classification for hazardous gas release in petroleum refining installations[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(5): 144-149. | |
16 | 雷达, 张建文, 冯文兴. 含硫化氢天然气泄漏事故的硫化氢中毒灾害分析[J]. 安全与环境学报, 2012, 12(3): 224-228. |
Lei D, Zhang J W, Feng W X. A new method for analyzing the hazardous hydrogen sulfide poisoning caused by the sulfurous natural gas leakage[J]. Journal of Safety and Environment, 2012, 12(3): 224-228. | |
17 | James M. Simplified methods of using probit analysis in consequence analysis[J]. Process Safety Progress, 2015, 34(1): 58-63. |
18 | Bagheri M, Alamdari A, Davoudi M. Quantitative risk assessment of sour gas transmission pipelines using CFD[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 108-118. |
19 | 朱渊, 王薛强, 陈国明. 基于最小中毒剂量的有毒气体泄漏人员优化疏散路线研究[J]. 安全与环境学报, 2013, 13(4): 270-274. |
Zhu Y, Wang X Q, Chen G M. Evacuating route optimization based on the minimum toxic dose in toxic gas-leaking accidents[J]. Journal of Safety and Environment, 2013, 13(4): 270-274. | |
20 | Zhang B, Chen G M. Quantitative risk analysis of toxic gas release caused poisoning—a CFD and dose–response model combined approach[J]. Process Safety and Environmental Protection, 2010, 88(4): 253-262. |
21 | Khan F, Abbasi S. A criterion for developing credible accident scenarios for risk assessment[J]. Journal of Loss Prevention in the Process Industries, 2002, 15(6): 467-475. |
22 | Dadashzadeh M, Khan F, Abbassi R, et al. Combustion products toxicity risk assessment in an offshore installation[J]. Process Safety and Environmental Protection, 2014, 92(6): 616-624. |
23 | Li J D, Ma G W, Abdel-Jawad M, et al. Gas dispersion risk analysis of safety gap effect on the innovating FLNG vessel with a cylindrical platform[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 304-316. |
24 | Li X J, Zhou R P, Konovessis D. CFD analysis of natural gas dispersion in engine room space based on multi-factor coupling[J]. Ocean Engineering, 2016, 111: 524-532. |
25 | Savvides C, Tam V, Kinnear D. Dispersion of fuel in offshore modules: comparison of predictions using FLACS and full-scale experiments[C]//Proceedings of Major Hazards Offshore Conference. London: ERA Technology Ltd., 2001. |
26 | Middha P, Hansen O R, Storvik I E. Validation of CFD-model for hydrogen dispersion[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 1034-1038. |
27 | Hansen O R, Gavelli F, Ichard M, et al. Validation of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(6): 857-877. |
28 | Shi J H, Khan F, Zhu Y, et al. Robust data-driven model to study dispersion of vapor cloud in offshore facility[J]. Ocean Engineering, 2018, 161: 98-110. |
29 | Shi J H, Li J D, Zhu Y, et al. A simplified statistic-based procedure for gas dispersion prediction of fixed offshore platform[J]. Process Safety and Environmental Protection, 2018, 114: 48-63. |
30 | Dasgotra A, Varun-Teja G, Sharma A, et al. CFD modeling of large-scale flammable cloud dispersion using FLACS[J]. Journal of Loss Prevention in the Process Industries, 2018, 56: 531-536. |
31 | Yang D D, Chen G M, Dai Z L. Accident modeling of toxic gas-containing flammable gas release and explosion on an offshore platform[J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104118. |
32 | 中国安全生产科学研究院. “十五”国家科技攻关计划“城市重大工业危险源评价与监测关键技术研究”专题总结报告[R]. 2006. |
China Academy of Safety Science and Technology. Special summary report on “Research on key technologies for assessment and monitoring of urban major industrial hazard sources” for the Tenth Five-Year Plan of National Scientific and Technological Research[R]. 2006. | |
33 | 中国安全生产科学研究院. 社会公益研究专项资金项目“城市工业安全规划关键技术”研究报告[R]. 2006. |
China Academy of Safety Science and Technology. Research report on “Key technology of urban industrial safety planning” of special fund project of social welfare research[R]. 2006. | |
34 | Center for Chemical Process Safety (CCPS). Guidelines for Consequence Analysis of Chemical Releases[M]. New York: Wiley-AIChE, 1999. |
35 | Berge W, Zwart A, Appelman L. Concentration-time mortality response relationship of irritant and systemically acting vapours and gases[J]. Journal of Hazardous Materials, 1986, 13(3): 301-309. |
36 | Bieringer P E, Annunzio A J, Platt N, et al. Contrasting the use of single-realization versus ensemble-average atmospheric dispersion solutions for chemical and biological defense analyses[J]. Journal of Applied Meteorology and Climatology, 2014, 53(6): 1399-1415. |
37 | Zhang Y, Zhao B. Simulation and health risk assessment of residential particle pollution by coal combustion in China[J]. Building and Environment, 2007, 42(2): 614-622. |
38 | 李晶晶. 海洋平台人员应急撤离风险分析与控制研究[D]. 青岛: 中国石油大学 (华东), 2015. |
Li J J. Risk Assessment and control strategy for individual evacuation, escape, rescue on offshore platforms[D]. Qingdao: China University of Petroleum (East China), 2015. | |
39 | 石油工业安全专业标委会. 含硫化氢油气井安全钻井推荐作法: SY/T 5087—2005[S]. 北京: 石油工业出版社, 2005. |
Petroleum Industry Safety Professional Bidding Committee. Recommended practice for safe drilling operations involving hydrogen sulfide: SY /T 5087—2005[S]. Beijing: China Petroleum Industry Press, 2005. | |
40 | Yang D D, Chen G M, Shi J H, et al. Effect of gas composition on dispersion characteristics of blowout gas on offshore platform[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 914-922. |
41 | Ahmad A, Hassan S A, Ripin A, et al. A risk-based method for determining passive fire protection adequacy[J]. Fire Safety Journal, 2013, 58(4): 160-169. |
42 | IMO. Guidelines for Evacuation Analysis for New and Existing Passenger Ships: MSC.1/Circ.1238[S]. London: International Maritime Organization, 2007. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[7] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[8] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[9] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[10] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[11] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[12] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[13] | 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508. |
[14] | 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780. |
[15] | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||