化工学报 ›› 2020, Vol. 71 ›› Issue (S1): 38-45.DOI: 10.11949/0438-1157.20190694
收稿日期:
2019-06-20
修回日期:
2019-09-16
出版日期:
2020-04-25
发布日期:
2020-04-25
通讯作者:
王刚
作者简介:
韩建年(1992—),男,硕士研究生,基金资助:
Jiannian HAN(),Gang WANG(),Mei YANG,Meijia LIU,Chengdi GAO,Jinsen GAO
Received:
2019-06-20
Revised:
2019-09-16
Online:
2020-04-25
Published:
2020-04-25
Contact:
Gang WANG
摘要:
费托蜡主要由链烷烃组成,不含硫、氮等杂原子,是生产清洁汽油的优质原料。由于缺少芳烃和环烷烃,费托蜡催化裂化过程需要强化异构化、芳构化反应以实现降低汽油馏分烯烃含量、保持高辛烷值的目标。对费托蜡为原料的催化裂化反应体系进行热力学分析,重点计算了不同温度下生成汽油馏分主要烃类的反应焓变和反应平衡常数。研究结果表明,以大分子链烷烃为主的费托蜡,其裂化吸热反应焓变约为80 kJ/mol,反应平衡常数随温度的升高而增大,高温有利于一次裂化反应。对于异构化反应,主要是大分子链烷烃裂化为烯烃,再由烯烃分子转化为异构烷烃,因此对于异构化反应,可以通过优化反应器促进汽油烯烃的转化。在考察温度范围内,烯烃环化反应平衡常数随温度升高而减小,环烷烃脱氢芳构化反应平衡常数随温度升高而增大,所以适宜的反应温度是制约进一步增加汽油中芳烃的重要因素。
中图分类号:
韩建年, 王刚, 杨梅, 刘美佳, 高成地, 高金森. 费托蜡催化裂化反应生产清洁汽油的热力学分析[J]. 化工学报, 2020, 71(S1): 38-45.
Jiannian HAN, Gang WANG, Mei YANG, Meijia LIU, Chengdi GAO, Jinsen GAO. Thermodynamic study on fluid catalytic cracking of Fischer-Tropsch wax to produce clean gasoline[J]. CIESC Journal, 2020, 71(S1): 38-45.
柴油馏分 | 质量分数/% | 汽油馏分 | 质量分数/% | 气体组分 | 质量分数/% |
---|---|---|---|---|---|
链烷烃 | 57.70 | 正构烷烃 | 6.27 | 碳一 | 0.49 |
总环烷烃 | 6.20 | 异构烷烃 | 41.94 | 碳二 | 2.72 |
单环芳烃 | 17.70 | 烯烃 | 36.59 | 碳三 | 39.19 |
双环芳烃 | 17.00 | 环烷烃 | 1.36 | 碳四 | 52.18 |
三环芳烃 | 1.40 | 芳烃 | 13.84 | 碳五 | 5.42 |
总计 | 100.00 | 总计 | 100.00 | 总计 | 100.00 |
表1 正三十一烷催化裂化反应产物烃组成分析
Table 1 Analysis of products of n-triacontane cracking reaction
柴油馏分 | 质量分数/% | 汽油馏分 | 质量分数/% | 气体组分 | 质量分数/% |
---|---|---|---|---|---|
链烷烃 | 57.70 | 正构烷烃 | 6.27 | 碳一 | 0.49 |
总环烷烃 | 6.20 | 异构烷烃 | 41.94 | 碳二 | 2.72 |
单环芳烃 | 17.70 | 烯烃 | 36.59 | 碳三 | 39.19 |
双环芳烃 | 17.00 | 环烷烃 | 1.36 | 碳四 | 52.18 |
三环芳烃 | 1.40 | 芳烃 | 13.84 | 碳五 | 5.42 |
总计 | 100.00 | 总计 | 100.00 | 总计 | 100.00 |
Substance | ||||||
---|---|---|---|---|---|---|
a1 | b1×103 | c1×106 | a2 | b2×103 | c2×107 | |
propane | -80.700 | -90.500 | 42.104 | -105.600 | 264.747 | 325.001 |
hexane | -129.110 | -150.135 | 73.459 | -170.450 | 554.166 | 503.033 |
octane | -160.340 | -190.251 | 94.492 | -212.690 | 747.742 | 623.610 |
nonane | -175.880 | -210.359 | 105.006 | -233.830 | 844.766 | 684.506 |
undecane | -207.110 | -250.454 | 125.997 | -276.110 | 1038.900 | 804.055 |
tricosane | -394.060 | -491.726 | 252.484 | -529.520 | 2202.780 | 1526.540 |
hentriacontane | -518.730 | -625.480 | 336.728 | -698.460 | 2978.630 | 2008.990 |
2-methylpentane | -137.110 | -147.072 | 72.785 | -177.680 | 563.031 | 483.129 |
2-methyloctane | -184.630 | -204.075 | 101.981 | -240.800 | 854.744 | 662.894 |
cyclohexane | -818.200 | -167.055 | 928.304 | -127.920 | 520.324 | 447.064 |
propylcyclohexane | -141.000 | -211.840 | 118.098 | -199.500 | 808.737 | 561.762 |
cyclohexylhexane | -187.020 | -272.040 | 149.591 | -262.180 | 1100.050 | 740.705 |
propene | 37.330 | -65.191 | 28.085 | 19.410 | 136.848 | 257.471 |
1-hexene | -9.810 | -125.047 | 59.735 | -44.220 | 427.345 | 433.515 |
1-nonene | -56.530 | -185.489 | 914.790 | -107.580 | 718.380 | 614.413 |
1-undecene | -87.790 | -225.438 | 112.353 | -149.840 | 912.363 | 735.384 |
1-dodecene | -103.270 | -245.814 | 123.039 | -170.910 | 1009.320 | 796.543 |
1-tricosene | -274.670 | -466.945 | 238.969 | -403.310 | 2076.680 | 1458.700 |
1-octacosene | -352.560 | -567.497 | 291.679 | -508.920 | 2561.790 | 1760.070 |
benzene | 101.400 | -72.136 | 32.878 | 81.510 | 152.823 | 265.222 |
propylbenzene | 40.970 | -130.675 | 63.463 | 4.890 | 429.374 | 440.117 |
hexylbenzene | -6.770 | -191.050 | 95.123 | -59.460 | 719.974 | 621.722 |
1-ethylnaphthalene | 127.100 | -120.985 | 61.103 | 93.650 | 431.031 | 383.179 |
表2 正三十一烷催化裂化产物组分?Hf?、?Gf?与温度T关联式
Table 2 Enthalpy changes and Gibbs free energy of FCC products of n-triacontane as equation of temperatures
Substance | ||||||
---|---|---|---|---|---|---|
a1 | b1×103 | c1×106 | a2 | b2×103 | c2×107 | |
propane | -80.700 | -90.500 | 42.104 | -105.600 | 264.747 | 325.001 |
hexane | -129.110 | -150.135 | 73.459 | -170.450 | 554.166 | 503.033 |
octane | -160.340 | -190.251 | 94.492 | -212.690 | 747.742 | 623.610 |
nonane | -175.880 | -210.359 | 105.006 | -233.830 | 844.766 | 684.506 |
undecane | -207.110 | -250.454 | 125.997 | -276.110 | 1038.900 | 804.055 |
tricosane | -394.060 | -491.726 | 252.484 | -529.520 | 2202.780 | 1526.540 |
hentriacontane | -518.730 | -625.480 | 336.728 | -698.460 | 2978.630 | 2008.990 |
2-methylpentane | -137.110 | -147.072 | 72.785 | -177.680 | 563.031 | 483.129 |
2-methyloctane | -184.630 | -204.075 | 101.981 | -240.800 | 854.744 | 662.894 |
cyclohexane | -818.200 | -167.055 | 928.304 | -127.920 | 520.324 | 447.064 |
propylcyclohexane | -141.000 | -211.840 | 118.098 | -199.500 | 808.737 | 561.762 |
cyclohexylhexane | -187.020 | -272.040 | 149.591 | -262.180 | 1100.050 | 740.705 |
propene | 37.330 | -65.191 | 28.085 | 19.410 | 136.848 | 257.471 |
1-hexene | -9.810 | -125.047 | 59.735 | -44.220 | 427.345 | 433.515 |
1-nonene | -56.530 | -185.489 | 914.790 | -107.580 | 718.380 | 614.413 |
1-undecene | -87.790 | -225.438 | 112.353 | -149.840 | 912.363 | 735.384 |
1-dodecene | -103.270 | -245.814 | 123.039 | -170.910 | 1009.320 | 796.543 |
1-tricosene | -274.670 | -466.945 | 238.969 | -403.310 | 2076.680 | 1458.700 |
1-octacosene | -352.560 | -567.497 | 291.679 | -508.920 | 2561.790 | 1760.070 |
benzene | 101.400 | -72.136 | 32.878 | 81.510 | 152.823 | 265.222 |
propylbenzene | 40.970 | -130.675 | 63.463 | 4.890 | 429.374 | 440.117 |
hexylbenzene | -6.770 | -191.050 | 95.123 | -59.460 | 719.974 | 621.722 |
1-ethylnaphthalene | 127.100 | -120.985 | 61.103 | 93.650 | 431.031 | 383.179 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
80.92 | 80.45 | 79.97 | 79.47 | 78.96 | |
79.54 | 79.09 | 78.63 | 78.15 | 77.65 | |
79.54 | 79.09 | 78.62 | 78.14 | 77.64 | |
79.51 | 79.06 | 78.59 | 78.10 | 77.60 | |
79.69 | 79.22 | 78.73 | 78.23 | 77.71 | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
78.92 | 78.45 | 77.96 | 77.45 | 76.93 | |
84.04 | 83.23 | 82.44 | 81.66 | 80.89 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
93.56 | 93.09 | 92.61 | 92.12 | 91.61 |
表3 不同温度下烃类裂化反应焓变
Table 3 Enthalpy changes of cracking of F-T wax at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
80.92 | 80.45 | 79.97 | 79.47 | 78.96 | |
79.54 | 79.09 | 78.63 | 78.15 | 77.65 | |
79.54 | 79.09 | 78.62 | 78.14 | 77.64 | |
79.51 | 79.06 | 78.59 | 78.10 | 77.60 | |
79.69 | 79.22 | 78.73 | 78.23 | 77.71 | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
78.92 | 78.45 | 77.96 | 77.45 | 76.93 | |
84.04 | 83.23 | 82.44 | 81.66 | 80.89 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
93.56 | 93.09 | 92.61 | 92.12 | 91.61 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
4.51 | 14.39 | 38.88 | 91.68 | 193.87 | |
7.94 | 24.80 | 65.88 | 153.10 | 319.66 | |
8.65 | 27.04 | 71.76 | 166.91 | 348.49 | |
8.25 | 25.76 | 68.29 | 158.64 | 330.87 | |
7.38 | 23.10 | 61.37 | 142.81 | 298.30 | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
8.55 | 26.45 | 69.56 | 160.44 | 332.42 | |
0.91 | 3.03 | 8.46 | 20.49 | 44.11 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
0.09 | 0.33 | 1.06 | 2.85 | 6.79 |
表4 不同温度下费托蜡裂化反应平衡常数
Table 4 Equilibrium constants of cracking of F-T wax at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
4.51 | 14.39 | 38.88 | 91.68 | 193.87 | |
7.94 | 24.80 | 65.88 | 153.10 | 319.66 | |
8.65 | 27.04 | 71.76 | 166.91 | 348.49 | |
8.25 | 25.76 | 68.29 | 158.64 | 330.87 | |
7.38 | 23.10 | 61.37 | 142.81 | 298.30 | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
8.55 | 26.45 | 69.56 | 160.44 | 332.42 | |
0.91 | 3.03 | 8.46 | 20.49 | 44.11 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
0.09 | 0.33 | 1.06 | 2.85 | 6.79 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
-6.35 | -6.24 | -6.14 | -6.03 | -5.94 | |
-135.96 | -136.21 | -136.40 | -136.53 | -136.59 | |
-50.62 | -50.92 | -51.32 | -51.82 | -52.42 |
表5 不同温度下生成C6异构烷烃反应焓变
Table 5 Enthalpy changes of producing to C6i-paraffins at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
79.32 | 78.83 | 78.35 | 77.86 | 77.36 | |
-6.35 | -6.24 | -6.14 | -6.03 | -5.94 | |
-135.96 | -136.21 | -136.40 | -136.53 | -136.59 | |
-50.62 | -50.92 | -51.32 | -51.82 | -52.42 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
1.61 | 1.47 | 1.36 | 1.28 | 1.21 | |
8674.19 | 1242.48 | 231.88 | 53.56 | 14.73 | |
66.52 | 31.89 | 16.88 | 9.67 | 5.91 |
表6 不同温度下生成C6异构烷烃反应平衡常数
Table 6 Equilibrium constants of producing to C6i-paraffins at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
8.29 | 25.82 | 68.32 | 158.41 | 329.75 | |
1.61 | 1.47 | 1.36 | 1.28 | 1.21 | |
8674.19 | 1242.48 | 231.88 | 53.56 | 14.73 | |
66.52 | 31.89 | 16.88 | 9.67 | 5.91 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
-90.55 | -90.15 | -89.61 | -88.93 | -88.12 | |
39.04 | 39.82 | 40.66 | 41.56 | 42.53 | |
45.05 | 45.71 | 46.44 | 47.26 | 48.16 | |
211.33 | 211.85 | 212.09 | 212.06 | 211.76 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
164.32 | 165.62 | 166.74 | 167.70 | 168.49 |
表7 不同温度下环化及芳构化反应焓变
Table 7 Enthalpy changes of cyclization and aromatization at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
-90.55 | -90.15 | -89.61 | -88.93 | -88.12 | |
39.04 | 39.82 | 40.66 | 41.56 | 42.53 | |
45.05 | 45.71 | 46.44 | 47.26 | 48.16 | |
211.33 | 211.85 | 212.09 | 212.06 | 211.76 | |
80.68 | 80.21 | 79.72 | 79.21 | 78.68 | |
164.32 | 165.62 | 166.74 | 167.70 | 168.49 |
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
1434.79 | 396.46 | 131.45 | 50.48 | 21.86 | |
0.25 | 0.45 | 0.73 | 1.14 | 1.70 | |
0.19 | 0.36 | 0.63 | 1.05 | 1.65 | |
1.20×103 | 2.42×104 | 3.25×105 | 3.15×106 | 2.34×107 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
1.08×103 | 1.12×104 | 8.55×104 | 5.13×105 | 2.52×106 |
表8 不同温度下环化及芳构化反应平衡常数
Table 8 Equilibrium constants of cyclization and aromatization at different temperatures
Reaction | |||||
---|---|---|---|---|---|
350℃ | 400℃ | 450℃ | 500℃ | 550℃ | |
1434.79 | 396.46 | 131.45 | 50.48 | 21.86 | |
0.25 | 0.45 | 0.73 | 1.14 | 1.70 | |
0.19 | 0.36 | 0.63 | 1.05 | 1.65 | |
1.20×103 | 2.42×104 | 3.25×105 | 3.15×106 | 2.34×107 | |
5.80 | 18.40 | 49.49 | 116.41 | 245.42 | |
1.08×103 | 1.12×104 | 8.55×104 | 5.13×105 | 2.52×106 |
1 | Amsel S, Maniatis A, Tavassoli M, et al. Stage and development possibilities of the Fischer-Tropsch-synthesis for the production of primary chemicals and feedstocks[J]. Food Chemistry, 1977, 190(11): 607-613. |
2 | Jager B. Developments in Fischer-Tropsch technology[M]//Studies in Surface Science and Catalysis.de Pontes M, Espinoza R L, Nicolaides C P,et al. Amsterdam: Elsevier, 1997: 107, 219-224. |
3 | 孙予罕, 陈建刚, 王俊刚, 等. 费托合成钴基催化剂的研究进展[J]. 催化学报, 2010, 31(8): 919-927. |
Sun Y H, Chen J G, Wang J G, et al. The development of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2010, 31(8): 919-927. | |
4 | Steynberg A P, Espinoza R L, Jager B, et al. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Applied Catalysis A, General, 1999, 186(1) : 41-54. |
5 | Pendyala V R R, Jacobs G, Mohandas J C, et al. Fischer-Tropsch synthesis: effect of water over iron-based catalysts[J]. Catalysis Letters, 2010, 140(3/4): 98-105. |
6 | 王林, 孔繁华, 刘晓彤, 等. 费托合成产物的加工利用技术探讨[J]. 炼油与化工, 2015, 26(5): 36-39. |
Wang L, Kong F H, Liu X T, et al. Processing and utilization of products from Fischer-Tropsch synthesis[J]. Refining and Chemical Industry, 2015, 26(5): 36-39. | |
7 | Miller S J, Shah N, Huffman G P. Conversion of waste plastic to lubricating base oil[J]. Energy & Fuels, 2005, 19(4): 1580-1586. |
8 | Kobayashi M, Saitoh M, Togawa S, et al. Branching structure of diesel and lubricant base oils prepared by isomerization/hydrocracking of fischer-tropsch waxes and α-olefins[J]. Energy & Fuels, 2009, 23(1): 513-518. |
9 | Leckel D, Liwanga-Ehumbu M. Diesel-selective hydrocracking of an iron-based Fischer-Tropsch wax fraction (C15-C45) using a MoO3-modified noble metal catalyst[J]. Energy & Fuels, 2006, 20(6): 2330-2336. |
10 | Hanaoka T, Miyazawa T, Shimura K, et al. Jet fuel synthesis from Fischer-Tropsch product under mild hydrocracking conditions using Pt-loaded catalysts[J]. Chemical Engineering Journal, 2015, 263(3): 178-185. |
11 | Gamba S, Pellegrini L A, Calemma V, et al. Liquid fuels from Fischer-Tropsch wax hydrocracking: isomer distribution[J]. Catalysis Today, 2010, 156(1/2): 58-64. |
12 | Mhike W, Focke W W, Mofokeng J P, et al. Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite[J]. Thermochimica Acta, 2012, 527(1/2): 75-82. |
13 | Molefi J A, Luyt A S, Krupa I. Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax[J]. Thermochimica Acta, 2010, 500(1/2): 88-92. |
14 | Luyt A S, Krupa I. Phase change materials formed by UV curable epoxy matrix and Fischer-Tropsch paraffin wax[J]. Energy Conversion and Management, 2009, 50(1): 57-61. |
15 | 闫朋辉, 王宁波, 李大鹏, 等. Y分子筛处理方式对催化剂及费托蜡加氢裂化性能的影响[J]. 工业催化, 2014, 22(6): 422-427. |
Yan P H, Wang N B, Li D P, et al. Effect of treatment methods of Y zeolite on catalysts and their hydrocracking performance for Fischer-Tropsch wax[J]. Industrial Catalysis, 2014, 22(6): 422-427. | |
16 | Kang J, Ma W, Keogh R A, et al. Hydrocracking and hydroisomerization of n-hexadecane, n-octacosane and Fischer-Tropsch wax over a Pt/SiO2-Al2O3 catalyst[J]. Catalysis Letters, 2012, 142(11): 1295-1305. |
17 | Möller K, le Grange P, Accolla C. A two-phase reactor model for the hydrocracking of Fischer-Tropsch-derived wax[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3791-3801. |
18 | Aimáček P, Kubička D, Pospíšil M, et al. Fischer-Tropsch product as a co-feed for refinery hydrocracking unit[J]. Fuel, 2013, 105(8): 432-439. |
19 | Calemma V, Gambaro C, Parker W O, et al. Middle distillates from hydrocracking of FT waxes: composition, characteristics and emission properties[J]. Catalysis Today, 2010, 149(1): 40-46. |
20 | Eisenberg B, Fiato R A, Mauldin H, et al. Exxon s advanced gas-to-liquids technology[M]//Studies in Surface Science and Catalysis. Parmaliana A, Sanfilippo D, Frusteri F,et al. Amsterdam: Elsevier, 1998: 119, 943-948. |
21 | Espinoza R L, Steynberg A P, Jager B, et al. Low temperature Fischer-Tropsch synthesis from a Sasol perspective[J]. Applied Catalysis A: General, 1999, 186(1): 13-26. |
22 | Hodala J L, Jung J, Yang E, et al. Hydrocracking of FT-wax to fuels over non-noble metal catalysts[J]. Fuel, 2016, 185(12): 339-347. |
23 | Gambaro C, Calemma V, Molinari D, et al. Hydrocracking of Fischer-Tropsch waxes: kinetic modeling via LHHW approach[J]. AIChE Journal, 2011, 57(3): 711-723. |
24 | Dupain X, Krul R A, Makkee M, et al. Are Fischer-Tropsch waxes good feedstocks for fluid catalytic cracking units?[J]. Catalysis Today, 2005, 106(1/2/3/4): 288-292. |
25 | Lappas A A, Iatridis D K, Vasalos I A. Production of liquid biofuels in a fluid catalytic cracking pilot-plant unit using waxes produced from a biomass-to-liquid (BTL) process[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 531-538. |
26 | Abbot J, Wojciechowski B W. Catalytic cracking on HY and HZSM-5 of a Fischer-Tropsch product[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(4): 501-507. |
27 | 刘伟成, 田志坚, 徐竹生. 正癸烷脱氢生成直链单烯烃的热力学分析[J]. 石油学报(石油加工), 2001, 17(4): 39-43. |
Liu W C, Tian Z J, Xu Z S. A thermodynamic analysis on dehydrogenation of n-decane to decene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2001, 17(4): 39-43. | |
28 | 魏伟, 孙予罕, 钟炳. 正十二烷脱氢制直链十二单烯的热力学计算[J]. 石油化工, 2000, 29(8): 582-585. |
Wei W, Sun Y H, Zhong B. Thermodynamic calculations for catalytic dehydrogenation of dodecane to dodecene[J]. Petrochemical Technology, 2000, 29(8): 582-585. | |
29 | 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 2000. |
Liang W J. Heavy Oil Chemistry[M]. Dongying: Petroleum University Press, 2000. | |
30 | Reynhardt E C. NMR investigation of Fischer-Tropsch waxes (Ⅲ): 13C and 1H study of oxidised hard wax[J]. Journal of Physics D: Applied Physics, 1985, 18(12): 2519-2528. |
31 | 王松汉. 石油化工设计手册. 第1卷, 石油化工基础数据[M]. 北京: 化学工业出版社, 2002. |
Wang S H. Handbook of Petrochemical Design. Volume1.Petrochemical Basic Data [M]. Beijing: Chemical Industry Press, 2002. | |
32 | 王峰, 任杰, 李永旺.密度泛函法计算C1~C14正构烃生成焓及C—C键裂解能[J]. 应用化学, 2009, 26(12): 1484-1488. |
Wang F, Ren J, Li Y W. Enthalpies of formation and C—C bond dissociation energies of C1—C14 alkanes and alkyl radicals calculated via density functional theory methods[J]. Chinese Journal of Applied Chemistry, 2009, 26(12): 1484-1488. | |
33 | 陶海桥, 龙军, 周涵, 等. 2-甲基戊烷分子中C—H键和C—C键异裂的分子模拟[J]. 计算机与应用化学, 2010, 27(7): 871-874. |
Tao H Q, Long J, Zhou H, et al. Molecular simulation studies on heterolysis of C—H and C—C bonds in 2-methylpentane [J]. Computers and Applied Chemistry, 2010, 27(7): 871-874. | |
34 | Miguel A R, Ancheyta J. Detailed description of kinetic and reactor modeling for naphtha catalytic reforming[J]. Fuel, 2011, 90(12): 3492-3508. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[4] | 雷博雯, 吴建华, 吴启航. R290低压比热泵高补气过热度循环研究[J]. 化工学报, 2023, 74(5): 1875-1883. |
[5] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[6] | 钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293. |
[7] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[8] | 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104. |
[9] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[10] | 郭祥, 乔金硕, 王振华, 孙旺, 孙克宁. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
[11] | 孙嘉辰, 裴春雷, 陈赛, 赵志坚, 何盛宝, 巩金龙. 化学链低碳烷烃氧化脱氢技术进展[J]. 化工学报, 2023, 74(1): 205-223. |
[12] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
[13] | 雍加望, 赵倩倩, 冯能莲. 基于非线性动态模型的质子交换膜燃料电池故障诊断[J]. 化工学报, 2022, 73(9): 3983-3993. |
[14] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
[15] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 491
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 396
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||