1 |
Special report on global warming of 1.5℃ [R]. Incheon, South Korea: Intergovernmental Panel on Climate Change (IPCC), 2018.
|
2 |
Ling H, Liu S, Gao H, et al. Effect of heat-stable salts on absorption/desorption performance of aqueous monoethanolamine (MEA) solution during carbon dioxide capture process [J]. Separation and Purification Technology, 2019, 212: 822-833.
|
3 |
Liu Z, Wang L, Kong X, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant [J]. Industrial & Engineering Chemistry Research, 2012, 51(21): 7355-7363.
|
4 |
Wawrzyńczak D, Majchrzak-Kucęba I, Srokosz K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and Purification Technology, 2019, 209: 560-570.
|
5 |
Mendes P A P, Ribeiro A M, Gleichmann K, et al. Separation of CO2/N2 on binderless 5A zeolite [J]. Journal of CO2 Utilization, 2017, 20: 224-233.
|
6 |
Yan H, Fu Q, Zhou Y, et al. CO2 capture from dry flue gas by pressure vacuum swing adsorption: a systematic simulation and optimization [J]. International Journal of Greenhouse Gas Control, 2016, 51: 1-10.
|
7 |
Cho S H, Park J H, Beum H T, et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in Surface Science & Catalysis, 2004, 153(4): 405-410.
|
8 |
Park J, Beum H, Kim J, et al. Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas [J]. Industrial & Engineering Chemistry Research, 2002, 41(16): 4122-4131.
|
9 |
Shen C, Liu Z, Li P, et al. Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads [J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 5011-5021.
|
10 |
Hosseini S F, Talaie M R, Aghamiri S, et al. Mathematical modeling of rapid temperature swing adsorption; the role of influencing parameters [J]. Separation and Purification Technology, 2017, 183: 181-193.
|
11 |
Hefti M, Joss L, Bjelobrk Z, et al. On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption [J]. Faraday Discussions, 2016, 192: 153-179.
|
12 |
Joss L, Gazzani M, Mazzotti M. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture [J]. Chemical Engineering Science, 2017, 158: 381-394.
|
13 |
Merel J, Clausse M, Meunier F. Experimental Investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites [J]. Industrial & Engineering Chemistry Research, 2008, 47(1): 209-215.
|
14 |
Osaka Y, Tsujiguchi T, Kodama A. Experimental investigation on the CO2 separation performance from humid flue gas by TSA process [J]. Separation and Purification Technology, 2018, 207: 77-82.
|
15 |
Ntiamoah A, Ling J, Xiao P, et al. CO2 Capture by temperature swing adsorption: use of hot CO2 -rich gas for regeneration [J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 703-713.
|
16 |
Zhao Q, Wu F, He Y, et al. Impact of operating parameters on CO2 capture using carbon monolith by electrical swing adsorption technology (ESA) [J]. Chemical Engineering Journal, 2017, 327: 441-453.
|
17 |
Lillia S, Bonalumi D, Grande C, et al. A comprehensive modeling of the hybrid temperature electric swing adsorption process for CO2 capture [J]. International Journal of Greenhouse Gas Control, 2018, 74: 155-173.
|
18 |
Song C, Kansha Y, Fu Q, et al. Reducing energy consumption of advanced PTSA CO2 capture process ― experimental and numerical study [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 69-78.
|
19 |
Wurzbacher J A. Development of a temperature-vacuum swing process for CO₂ capture from ambient air [J]. Mission Reports of Visiting Experts J., 2015, 11(2): 74-84.
|
20 |
Ishibashi M, Ota H, Akutsu N, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy Conversion & Management, 1996, 37(6/7/8): 929-933.
|
21 |
Zhao R, Zhao L, Deng S, et al. A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle [J]. Energy, 2017, 137: 495-509.
|
22 |
Ben-Mansour R, Qasem N A A. An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74 [J]. Energy Conversion and Management, 2018, 156: 10-24.
|
23 |
Santra B. Molecular rearrangement of trinuclear Cu(I)-NHC: synthesis of mono, binuclear and polymeric Cu(I)-NHCs [J]. Chemistry Select, 2019, 4(6): 1866-1871.
|
24 |
Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 673-674.
|
25 |
Zhang W, Liu H, Sun C, et al. Capturing CO2 from ambient air using a polyethyleneimine-silica adsorbent in fluidized beds [J]. Chemical Engineering Science, 2014, 116: 306-316.
|
26 |
Zhao R, Deng S, Liu Y, et al. Carbon pump: Fundamental theory and applications [J]. Energy, 2017, 119: 1131-1143.
|
27 |
Zhao R, Deng S, Zhao L, et al. Performance analysis of temperature swing adsorption for CO2 capture using thermodynamic properties of adsorbed phase [J]. Applied Thermal Engineering, 2017, 123: 205-215.
|
28 |
Tao L, Xiao P, Qader A, et al. CO2 capture from high concentration CO2 natural gas by pressure swing adsorption at the CO2 CRC Otway site, Australia [J]. International Journal of Greenhouse Gas Control, 2019, 83: 1-10.
|
29 |
Liu B, Shi J, Yue K, et al. Distinct temperature-dependent CO2 sorption of two isomeric metal-organic frameworks [J]. Crystal Growth & Design, 2014, 14(4): 2003-2008.
|