化工学报 ›› 2021, Vol. 72 ›› Issue (1): 71-85.DOI: 10.11949/0438-1157.20201356
收稿日期:
2020-09-25
修回日期:
2020-12-01
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
仲兆祥
作者简介:
朱肖(1992—),男,博士研究生,基金资助:
ZHU Xiao(),FENG Shasha,ZHONG Zhaoxiang(),XING Weihong
Received:
2020-09-25
Revised:
2020-12-01
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHONG Zhaoxiang
摘要:
工业烟气中经常含有大量油性气溶胶,而传统过滤材料基本都是亲油性的,导致吸附污染严重。双疏型膜材料在面向高湿、含油性气溶胶的复杂烟气体系时,具有分离效率高、抗污染性强和易清洁等优点。本文系统总结了用于空气净化过程的双疏膜材料制备方法,通过对应用过程油性气溶胶与膜表面之间的微观作用分析,阐释了影响膜污染形成与控制的表界面作用机理。最后,对双疏膜材料在空气净化领域的发展前景做了分析和研讨。
中图分类号:
朱肖, 冯厦厦, 仲兆祥, 邢卫红. 用于空气净化的双疏膜制备及应用进展[J]. 化工学报, 2021, 72(1): 71-85.
ZHU Xiao, FENG Shasha, ZHONG Zhaoxiang, XING Weihong. Preparation and research progress of amphiphobic membrane for air purification[J]. CIESC Journal, 2021, 72(1): 71-85.
17 | Ghaffari S, Aliofkhazraei M, Barati Darband Gh, et al. Review of superoleophobic surfaces: evaluation, fabrication methods, and industrial applications [J]. Surfaces and Interfaces, 2019, 17: 100340. |
18 | Lu K J, Chen Y, Chung T S. Design of omniphobic interfaces for membrane distillation - a review [J]. Water Research, 2019, 162: 64-77. |
19 | Jin C, Jiang Y, Niu T, et al. Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification [J]. Journal of Materials Chemistry, 2012, 22(25): 12562-12567. |
20 | Gao X, Wen S, Yang B, et al. Enhanced air filtration performance under high-humidity condition through electrospun membranes with optimized structure [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1788-1795. |
21 | Kuang M, Wang J, Bao B, et al. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sliding three phase contact line [J]. Advanced Optical Materials, 2014, 2(1): 34-38. |
22 | 袁子怡, 樊华, 侯得印, 等. 十二烷基硫酸钠对膜蒸馏过程影响[J]. 化工学报, 2019, 70(4): 1455-1463. |
Yuan Z Y, Fan H, Hou D Y, et al. Effects of sodium dodecyl sulfate in DCMD process[J]. CIESC Journal, 2019, 70(4): 1455-1463. | |
23 | Wang H, Xue Y, Ding J, et al. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane [J]. Angewandte Chemie, 2011, 50: 11433-11436. |
24 | Meng H, Wang S, Xi J, et al. Facile means of preparing superamphiphobic surfaces on common engineering metals [J]. Journal of Physical Chemistry C, 2008, 112(30): 11454-11458. |
25 | Campos R, Guenthner A J, Meuler A J, et al. Superoleophobic surfaces through control of sprayed-on stochastic topography [J]. Langmuir the ACS Journal of Surfaces & Colloids, 2012, 28(25): 9834-9841. |
26 | Wu J, Ding Y, Wang J, et al. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions [J]. Journal of Materials Chemistry A, 2018, 6(16): 7014-7020. |
27 | Xu B, Ding Y, Qu S, et al. Superamphiphobic cotton fabrics with enhanced stability [J]. Applied Surface Science, 2015, 356: 951-957. |
28 | Yu H, Tian X, Luo H, et al. Hierarchically textured surfaces of versatile alloys for superamphiphobicity [J]. Materials Letters, 2015, 138: 184-187. |
29 | Chu Z, Seeger S. Superamphiphobic surfaces [J]. Chemical Society Reviews, 2014, 43(8): 2784-2798. |
30 | Zhang D, Cheng Z, Kang H, et al. A smart superwetting surface with responsivity in both surface chemistry and microstructure [J]. Angew Chem. Int. Ed. Engl., 2018, 57(14): 3701-3705. |
1 | Hu M, Yin L, Low N, et al. Zeolitic-imidazolate-framework filled hierarchical porous nanofiber membrane for air cleaning [J]. Journal of Membrane Science, 2020, 594: 117467. |
2 | Wei W, Zhang W, Jiang Q, et al. Preparation of non-oxide SiC membrane for gas purification by spray coating [J]. Journal of Membrane Science, 2017, 540: 381-390. |
3 | Zhong Z, Xu Z, Sheng T, et al. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods [J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21538-21544. |
4 | Feng S, Li X, Zhao S, et al. Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption [J]. Environmental Science: Nano, 2018, 5(12): 3023-3031. |
5 | Zhu Q, Tang X, Feng S, et al. ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control [J]. Journal of Membrane Science, 2019, 581: 252-261. |
6 | Qiao H, Feng S, Low Z X, et al. Al-DTPA microfiber assisted formwork construction technology for high-performance SiC membrane preparation [J]. Journal of Membrane Science, 2019, 594: 117464. |
7 | Tang X, Zhao S, Feng S, et al. Exploring the key factors in dusty gas filtration: experimental and modeling studies [J]. Industrial & Engineering Chemistry Research, 2019, 58(42): 19633-19641. |
8 | Chattopadhyay S, Hatton T A, Rutledge G C. Aerosol filtration using electrospun cellulose acetate fibers [J]. Journal of Materials Science, 2015, 51(1): 204-217. |
9 | Jeong S, Cho H, Han S, et al. High efficiency, transparent, reusable, and active PM2.5 filters by hierarchical Ag nanowire percolation network [J]. Nano Letters, 2017, 17(7): 4339-4346. |
10 | Liu H, Cao C, Huang J, et al. Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances [J]. Nanoscale, 2020, 12(2): 437-453. |
11 | Feng S, Zhou M, Han F, et al. A bifunctional MnOx@PTFE catalytic membrane for efficient low temperature NOx-SCR and dust removal [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1260-1267. |
31 | Yong J, Chen F, Yang Q, et al. Superoleophobic surfaces [J]. Chemical Society Reviews, 2017, 46(14): 4168-4217. |
32 | Wang T, Cui J, Ouyang S, et al. A new approach to understand the Cassie state of liquids on superamphiphobic materials [J]. Nanoscale, 2016, 8(5): 3031-3039. |
33 | Lin J, Tian F, Ding B, et al. Facile synthesis of robust amphiphobic nanofibrous membranes [J]. Applied Surface Science, 2013, 276: 750-755. |
34 | Zhu X, Feng S, Zhao S, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification [J]. Journal of Membrane Science, 2020, 594: 117473. |
35 | Huang Y X, Wang Z, Hou D, et al. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation [J]. Journal of Membrane Science, 2017, 531: 122-128. |
36 | An X, Liu Z, Hu Y. Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation [J]. Desalination, 2018, 432: 23-31. |
37 | 周虹佳, 刘飞, 周明, 等. 双膜强化类Fenton工艺处理制浆废水的研究[J]. 化工学报, 2018, 69(1): 490-498. |
Zhou H J, Liu F, Zhou M, et al. Dual-membrane assisted heterogeneous Fenton for pulp wastewater treatment[J]. CIESC Journal, 2018, 69(1): 490-498. | |
12 | Jung S, An J, Na H, et al. Surface energy of filtration media influencing the filtration performance against solid particles, oily aerosol, and bacterial aerosol [J]. Polymers, 2019, 11(6): 935. |
13 | Chen F, Ji Z, Qi Q. Effect of liquid surface tension on the filtration performance of coalescing filters [J]. Separation and Purification Technology, 2019, 209: 881-891. |
14 | Park S S, Kang M S, Hwang J. Oil mist collection and oil mist-to-gas conversion via dielectric barrier discharge at atmospheric pressure [J]. Separation and Purification Technology, 2015, 151: 324-331. |
38 | Poncin-Epaillard F, Chevet B, Brosse J C. Functionalization of polypropylene by a microwave (433 MHz) cold plasma of carbon dioxide. Surface modification or surface degradation? [J]. European Polymer Journal, 1990, 26(3): 333-339. |
39 | Riekerink M B O, Terlingen J G A, Engbers G H M, et al. Selective etching of semicrystalline polymers: CF4 gas plasma treatment of poly(ethylene) [J]. Langmuir : the ACS Journal of Surfaces And Colloids, 1999, 15(14): 4847-4856. |
40 | Hai Y, Yu X C H, Lan Q L, et al. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment [J]. Plasma Processes & Polymers, 2010, 5(1): 84-91. |
41 | Feng S, Zhong Z, Wang Y, et al. Progress and perspectives in PTFE membrane: preparation, modification, and applications [J]. Journal of Membrane Science, 2018, 549: 332-349. |
42 | Feng S, Zhong Z, Zhang F, et al. Amphiphobic polytetrafluoroethylene membranes for efficient organic aerosol removal [J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8773-8781. |
15 | Jiang T, Guo Z, Liu W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications [J]. Journal of Materials Chemistry A, 2015, 3(5): 1811-1827. |
16 | Liu M, Wang S, Jiang L. Nature-inspired superwettability systems [J]. Nature Reviews Materials, 2017, 2(7): 17036. |
43 | Yoon Y I, Moon H S, Lyoo W S, et al. Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment [J]. Carbohydrate Polymers, 2009, 75(2): 246-250. |
44 | Cuddy M F, Fisher E R. Contributions of CF and CF2 species to fluorocarbon film composition and properties for CxFy plasma-enhanced chemical vapor deposition [J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1733-1741. |
45 | 左成业, 涂睿, 丁晓斌, 等. PDMS复合膜回收酯化反应废水中的异丁醇[J]. 化工学报, 2020, 71(9): 4189-4199. |
Zuo C Y, Tu R, Ding X B, et al. Recovery of isobutanol from esterified wastewater by PDMS composite membrane[J]. CIESC Journal, 2020, 71(9): 4189-4199. | |
46 | Yan Y H, Chan-Park M B, Yue C Y. CF4 plasma treatment of poly(dimethylsiloxane): effect of fillers and its application to high-aspect-ratio UV embossing [J]. Langmuir, 2005, 21: 8905-8912. |
47 | Chul W Y, Chen Y, Tijing L D, et al. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation [J]. Journal of Membrane Science, 2017, 529: 234-242. |
48 | Wei X, Zhao B, Li X M, et al. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation [J]. Journal of Membrane Science, 2012, 407/408: 164-175. |
49 | Fan H, Gao A, Zhang G, et al. A facile strategy towards developing amphiphobic polysulfone membrane with double Re-entrant structure for membrane distillation [J]. Journal of Membrane Science, 2020, 602: 117933. |
50 | Shan H, Liu J, Li X, et al. Nanocoated amphiphobic membrane for flux enhancement and comprehensive anti-fouling performance in direct contact membrane distillation [J]. Journal of Membrane Science, 2018, 567: 166-180. |
51 | Lin S, Nejati S, Boo C, et al. Omniphobic membrane for robust membrane distillation [J]. Environmentalence & Technology Letters, 2014, 1(11): 443-447. |
52 | Khan A A, Siyal M I, Lee C K, et al. Hybrid organic-inorganic functionalized polyethersulfone membrane for hyper-saline feed with humic acid in direct contact membrane distillation [J]. Separation and Purification Technology, 2019, 210: 20-28. |
53 | Xu C, Fang J, Low Z X, et al. Amphiphobic PFTMS@nano-SiO2/ePTFE membrane for oil aerosol removal [J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10431-10438. |
54 | Lu X, Peng Y, Ge L, et al. Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation [J]. Journal of Membrane Science, 2016, 505: 61-69. |
55 | Zhang P, Lu W, Wang Y, et al. Fabrication of flexible and amphiphobic alumina mats by electrospinning [J]. Journal of Sol-Gel Science and Technology, 2016, 80(3): 690-696. |
56 | Mao X, Chen Y, Si Y, et al. Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances [J]. RSC Advances, 2013, 3(20): 7562. |
57 | Chen L H, Huang A, Chen Y R, et al. Omniphobic membranes for direct contact membrane distillation: effective deposition of zinc oxide nanoparticles [J]. Desalination, 2018, 428: 255-263. |
58 | Li J, Yan L, Ouyang Q, et al. Facile fabrication of translucent superamphiphobic coating on paper to prevent liquid pollution [J]. Chemical Engineering Journal, 2014, 246: 238-243. |
59 | Wu X, Wyman I, Zhang G, et al. Preparation of superamphiphobic polymer-based coatings via spray- and dip-coating strategies [J]. Progress in Organic Coatings, 2016, 90: 463-471. |
60 | Zhou H, Wang H, Niu H, et al. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces [J]. Advanced Functional Materials, 2017, 27(14): 1604261. |
61 | Li X, Shan H, Cao M, et al. Facile fabrication of omniphobic PVDF composite membrane via a waterborne coating for anti-wetting and anti-fouling membrane distillation [J]. Journal of Membrane Science, 2019, 589: 117262. |
62 | Dizge N, Shaulsky E, Karanikola V. Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes [J]. Journal of Membrane Science, 2019, 590: 117271. |
63 | Wu X Q, Wu X, Wang T Y, et al. Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation [J]. Journal of Membrane Science, 2020, 606: 118075. |
64 | Tuteja A, Choi W, Ma M, et al. Designing superoleophobic surfaces [J]. Science, 2007, 318(5856): 1618-1622. |
65 | Sharma B, Verma R, Baur C, et al. Ultra low dielectric, self-cleansing and highly oleophobic POSS-PFCP aryl ether polymer composites [J]. Journal of Materials Chemistry C, 2013, 1(43): 7222. |
66 | Boban M, Golovin K, Tobelmann B, et al. Smooth, all-solid, low-hysteresis, omniphobic surfaces with enhanced mechanical durability [J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11406–11413. |
67 | Lu C, Su C, Cao H, et al. Nanoparticle-free and self-healing amphiphobic membrane for anti-surfactant-wetting membrane distillation [J]. Journal of Environmental Sciences, 2021, 100: 298-305. |
68 | Choi G R, Park J, Ha J W, et al. Superamphiphobic web of PTFEMA fibers via simple electrospinning without functionalization [J]. Macromolecular Materials and Engineering, 2010, 295(11): 995-1002. |
69 | Zhang W, Chen S, Hu W, et al. Facile fabrication of flexible magnetic nanohybrid membrane with amphiphobic surface based on bacterial cellulose [J]. Carbohydrate Polymers, 2011, 86(4): 1760-1767. |
70 | Wei X, Chen F, Wang H, et al. Efficient removal of aerosol oil-mists using superoleophobic filters [J]. Journal of Materials Chemistry A, 2018, 6(3): 871-877. |
71 | Kampa D, Wurster S, Meyer J, et al. Validation of a new phenomenological “jump-and-channel” model for the wet pressure drop of oil mist filters [J]. Chemical Engineering Science, 2015, 122: 150-160. |
72 | Charvet A, Gonthier Y, Gonze E, et al. Experimental and modelled efficiencies during the filtration of a liquid aerosol with a fibrous medium [J]. Chemical Engineering Science, 2010, 65(5): 1875-1886. |
73 | Mead-Hunter R, King A J C, Mullins B J. Aerosol-mist coalescing filters—a review [J]. Separation and Purification Technology, 2014, 133: 484-506. |
74 | Zhang R, Liu B, Yang A, et al. In situ investigation on the nanoscale capture and evolution of aerosols on nanofibers [J]. Nano Letters, 2018, 18(2): 1130-1138. |
75 | Dawar S, Chase G G. Correlations for transverse motion of liquid drops on fibers [J]. Separation and Purification Technology, 2010, 72(3): 282-287. |
76 | Kampa D, Wurster S, Buzengeiger J, et al. Pressure drop and liquid transport through coalescence filter media used for oil mist filtration [J]. International Journal of Multiphase Flow, 2014, 58: 313-324. |
77 | Liu J, Zhou H, Wu X, et al. Superoleophobic filters: improvement of filtration performance by front attachment of oil-guiding fabric [J]. Advanced Materials Interfaces, 2019, 7(2): 1901808. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[8] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[13] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[14] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[15] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||