1 |
North E J, Halden R U. Plastics and environmental health: the road ahead[J]. Reviews on Environmental Health, 2013, 28(1): 1-8.
|
2 |
Iman M, Fathi A, Badr H.Biomedical applications of biodegradable polyesters[J]. Polymers, 2016, 8(1): 1-32.
|
3 |
Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications[J]. Macromolecular Rapid Communications, 2000, 21(3): 117-132.
|
4 |
Jandas P J, Mohanty S, Nayak S K. Sustainability, compostability, and specific microbial activity on agricultural mulch films prepared from poly(lactic acid)[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17714-17724.
|
5 |
Xue S, Zhang Z, Wu G. Application of a novel temporary blocking agent in refracturing[J]. Society of Petroleum Engineers, 2015, SPE-176900-MS.
|
6 |
Shah A A, Hasan F, Hameed A, et al. Biological degradation of plastics: a comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246-265.
|
7 |
Rydz J, Sikorska W, Kyulavska M, et al. Polyester-based (bio)degradable polymers as environ-mentally friendly materials for sustainable development[J]. International Journal of Molecular Sciences, 2014, 16(1): 564-596.
|
8 |
Reddy M M, Vivekanandhan S, Misra M, et al. Biobased plastics and bionanocomposites: current status and future opportunities[J]. Progress in Polymer Science, 2013, 38(10): 1653-1689.
|
9 |
Slomkowski S, Sosnowski S, Gadzinowski M. Polyesters from lactides and ε-caprolactone. Dispersion polymerization versus polymerization in solution[J]. Polymer Degradation & Stability, 1998, 59(1): 153-160.
|
10 |
Huang J C, Shetty A S, Wang M. Biodegradable plastics: a review[J]. Advances in Polymer Technology, 1990, 10(1): 23-30.
|
11 |
Bhagat V, Becker M L. Degradable adhesives for surgery and tissue engineering[J]. Biomacromolecules, 2017, 18(10): 3009-3039.
|
12 |
Liu L, Li S, Garreau H, et al. Selective enzymatic degradations of poly(l-lactide) and poly(epsilon-caprolactone) blend films[J]. Biomacromolecules, 2000, 1(3): 350-359.
|
13 |
Elsawy M A, Kim K H, Park J W, et al. Hydrolytic degradation of polylactic acid (PLA) and its composites[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1346-1352.
|
14 |
Lasprilla A J R, Martinez G A R, Lunelli B H, et al. Poly-lactic acid synthesis for application in biomedical devices: a review[J]. Biotechnology Advances, 2012, 30: 321-328.
|
15 |
Farah S, Anderson D G, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review[J]. Advanced Drug Delivery Reviews, 2016, 107: 367-392.
|
16 |
Razavi M, Wang S Q. Why is crystalline poly(lactic acid) brittle at room temperature?[J] Macromolecules, 2019, 52: 5429-5441.
|
17 |
Rasal R M, Janorkar A V, Hirt D E. Poly(lactic acid) modifications[J]. Progress in Polymer Science, 2010; 35: 338-356.
|
18 |
Liu G M, Zhang X Q, Wang D J. Tailoring crystallization: towards high‐performance poly(lactic acid)[J]. Advanced Materials, 2014, 26: 6905-6911.
|
19 |
Pivsa-Art W, Fujii K, Nomura K, et al. The effect of poly (ethylene glycol) as plasticizer in blends of poly (lactic acid) and poly (butylene succinate)[J]. Journal of Applied Polymer Science, 2016, 133(8): 430-444.
|
20 |
Lai W C, Liau W B, Lin T T. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA[J]. Polymer, 2004, 45: 3073-3080.
|
21 |
Hu Y, Hu Y S, Topolkaraev V, et al. Aging of poly(lactide)/poly(ethylene glycol) blends(Ⅱ). Poly(lactide) with high stereoregularity[J]. Polymer, 2003, 44: 5711-5720.
|
22 |
Wang H P, Tong D J, Wang L, et al. A facile strategy for fabricating PCL/PEG block copolymer with excellent enzymatic degradation[J]. Polymer degradation and stability, 2017, 140: 64-73.
|
23 |
黄志辉, 包永忠, 潘鹏举. 可逆加成-断裂链转移聚合制备聚氯乙烯-b-聚乙二醇-b-聚氯乙烯共聚物[J]. 化工学报, 2017, 68(6): 2569-2576.
|
|
Huang Z H, Bao Y Z, Pan P J. Synthesis of poly(vinyl chloride)-b-poly(ethylene glycol)-b-poly(vinyl chloride) block copolymers by reversible addition-fragmentation chain transfer polymerizations[J]. CIESC Journal, 2017, 68(6): 2569-2576.
|
24 |
Wang Y, Wei X, Duan J, et al. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol)[J]. Chinese Journal of Polymer Science, 2017, 35(3): 386-399.
|
25 |
Liu Y L, Shao J, Sun J R, et al. Improved mechanical and thermal properties of PLLA by solvent blending with PDLA-b-PEG-b-PDLA[J]. Polymer Degradation and Stability, 2014, 101: 10-17.
|
26 |
Tacha S, Saelee T, Khotasen W, et al. Stereocomplexation of PLL/PDL-PEG-PDL blends: effects of blend morphology on film toughness[J]. European Polymer Journal, 2015, 69: 308-318.
|
27 |
Park B S, Song J C, Park D H, et al. PLA/chain‐extended PEG blends with improved ductility[J]. Journal of Applied Polymer Science, 2012, 123(4): 2360-2367.
|
28 |
Wang B, Hina K, Zou H, et al. Thermal, crystallization, mechanical and decomposition properties of poly (lactic acid) plasticized with poly (ethylene glycol)[J]. Journal of Vinyl and Additive Technology, 2018, 24: E154-E163.
|
29 |
Pei A, Zhou Q, Berglund L A. Functionalized cellulose nanocrystals as biobased nuclea-tion agents in poly(l-lactide) (PLLA) -crystallization and mechanical property effects[J]. Composites Science and Technology, 2010, 70(5): 815-821.
|
30 |
Lorenzo A T, Arnal M L, Albuerne J, et al. DSC isothermal polymer crystallization kinetics measurements and the use of the avrami equation to fit the data: guidelines to avoid common problems[J]. Polymer Testing, 2007, 26: 222-231.
|
31 |
Wang H S, Qiu Z B. Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature[J]. Thermochimica Acta, 2012, 527: 40-46.
|
32 |
Grizzi I, Garreau H, Li S, et al. Hydrolytic degradation of devices based on poly(DL-lactic acid) size dependence[J]. Biomaterials, 1995, 16: 305-311.
|
33 |
Wang Y, Pan J Z, Han X X, et al. A phenomenological model for the degradation of biodegradable polymers[J]. Biomaterials, 2008, 29: 3393-3401.
|