化工学报 ›› 2021, Vol. 72 ›› Issue (2): 901-912.DOI: 10.11949/0438-1157.20201106
收稿日期:
2020-08-03
修回日期:
2020-09-03
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
王曰杰
作者简介:
王曰杰(1990—),男,博士,工程师,基金资助:
WANG Yuejie(),LI Lingling,HE Chunhong
Received:
2020-08-03
Revised:
2020-09-03
Online:
2021-02-05
Published:
2021-02-05
Contact:
WANG Yuejie
摘要:
绿色低能耗的炼油废催化剂生物淋滤技术已受到广泛关注。本文从炼油废催化剂金属含量及赋存特征、生物淋滤微生物种类、金属浸取效率、生物淋滤过程影响因素和淋滤动力学等角度综述了相关研究成果,并对研究现状和发展前景进行了简要分析。硫酸杆菌、黑曲霉菌、简青霉菌是最常见的废催化剂生物淋滤菌种;生物淋滤作用下加氢废催化剂金属浸取效率较高,流化催化裂化(FCC)废催化剂的金属较难浸取;温度、固液比、废催化剂粒径是影响炼油废催化剂生物淋滤过程的主要因素;化学反应动力学和膜扩散动力学是研究中广泛应用的动力学模型。目前关于生物淋滤处理炼油废催化剂金属的研究仍处于实验室研究阶段,尚未开展小试、中试或工业化应用的相关研究。
中图分类号:
王曰杰, 李玲玲, 何春宏. 炼油废催化剂生物淋滤脱金属研究进展[J]. 化工学报, 2021, 72(2): 901-912.
WANG Yuejie, LI Lingling, HE Chunhong. Review on the bioleaching of spent refinery catalysts for metals removal[J]. CIESC Journal, 2021, 72(2): 901-912.
35 | Zhang H Z, Guo L, Liu Z W, et al. Hazardous characteristics and pollution features of spent fluid catalytic cracking catalysts[J]. Environmental Protection of Chemical Industry, 2019, 39(2): 231-234. |
36 | Srichandan H, Kim D J, Gahan C S, et al. Bench-scale batch bioleaching of spent petroleum catalyst using mesophilic iron and sulfur oxidizing acidophiles[J]. Korean Journal of Chemical Engineering, 2013, 30(5): 1076-1082. |
37 | Pathak A, Srichandan H, Kim D J. Fractionation behavior of metals (Al, Ni, V, and Mo) during bioleaching and chemical leaching of spent petroleum refinery catalyst[J]. Water, Air, & Soil Pollution, 2014, 225(3): 1-10. |
38 | Mishra D, Kim D J, Ralph D E, et al. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect[J]. Journal of Hazardous Materials, 2008, 152(3): 1082-1091. |
39 | Garbarino G, Riani P, Infantes-Molina A, et al. On the detectability limits of nickel species on NiO/γ-Al2O3 catalytic materials[J]. Applied Catalysis A: General, 2016, 525: 180-189. |
40 | Pathak A, Srichandan H, Kim D J. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment[J]. Journal of Environmental Management, 2019, 242: 372-383. |
41 | 张旭, 冯雅丽, 李浩然, 等. 微生物浸出MnO2过程中嗜酸氧化亚铁硫杆菌与Fe3+的催化作用[J]. 化工学报, 2014, 65(8): 3159-3163. |
Zhang X, Feng Y L, Li H R, et al. Catalytic effect of Acidithiobacillus ferrooxidans and Fe3+ on microbial leaching process of MnO2[J]. CIESC Journal, 2014, 65(8): 3159-3163. | |
42 | Burgstaller W, Schinner F. Leaching of metals with fungi[J]. Journal of Biotechnology, 1993, 27(2): 91-116. |
43 | Bayraktar O. Bioleaching of nickel from equilibrium fluid catalytic cracking catalysts [J]. World Journal of Microbiology and Biotechnology, 2005, 21(5): 661-665. |
44 | Das S, Deshavath N N, Goud V V, et al. Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species[J]. Biotechnology Reports, 2019, 23: e00349. |
45 | Reed D W, Fujita Y, Daubaras D L, et al. Bioleaching of rare earth elements from waste phosphors and cracking catalysts[J]. Hydrometallurgy, 2016, 166: 34-40. |
1 | Pradhan D, Kim D J, Ahn J G, et al. Kinetics and statistical behavior of metals dissolution from spent petroleum catalyst using acidophilic iron oxidizing bacteria[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 866-871. |
2 | 刘腾, 邱兆富, 杨骥, 等. 我国废炼油催化剂的产生量、危害及处理方法[J]. 化工环保, 2015, 35(2): 159-164. |
Liu T, Qiu Z F, Yang J, et al. Output, hazard and treatment methods of spent refinery catalysts in China[J]. Environmental Protection of Chemical Industry, 2015, 35(2): 159-164. | |
3 | Research BCC. Refinery Catalysts: Technologies and Global Markets[R]. Wellesley (MA): BCC Publishing, 2013. |
4 | 刘健, 邱兆富, 杨骥, 等. 我国石油化工废催化剂的综合利用[J]. 中国资源综合利用, 2015, 33(6): 38-42. |
Liu J, Qiu Z F, Yang J, et al. The comprehensive utilization of spent petrochemical catalysts in China[J]. China Resources Comprehensive Utilization, 2015, 33(6): 38-42. | |
5 | Dong H, Zhao J, Chen J, et al. Recovery of platinum group metals from spent catalysts: a review[J]. International Journal of Mineral Processing, 2015, 145: 108-113. |
6 | 于泳, 彭胜, 严加才, 等. 铂族金属催化剂的回收技术进展[J]. 河北化工, 2011, 34(2): 50-55. |
Yu Y, Peng S, Yan J C, et al. Progress of platinum group metals recovery from spent carrier catalysts[J]. Hebei Chemical Industry, 2011, 34(2): 50-55. | |
7 | Srichandan H, Pathak A, Singh S, et al. Sequential leaching of metals from spent refinery catalyst in bioleaching–bioleaching and bioleaching–chemical leaching reactor: comparative study[J]. Hydrometallurgy, 2014, 150: 130-143. |
8 | Pathak A, Dastidar M G, Sreekrishnan T R. Bioleaching of heavy metals from sewage sludge: a review[J]. Journal of Environmental Management, 2009, 90(8): 2343-2353. |
9 | Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248. |
10 | Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review[J]. Hydrometallurgy, 2006, 84(1/2): 81-108. |
11 | Motaghed M, Mousavi S M, Rastegar S O, et al. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization[J]. Bioresource Technology, 2014, 171: 401-409. |
12 | Pathak A, Healy M G, Morrison L. Changes in the fractionation profile of Al, Ni, and Mo during bioleaching of spent hydroprocessing catalysts with Acidithiobacillus ferrooxidans[J]. Journal of Environmental Science and Health, Part A, 2018, 53(11): 1006-1014. |
13 | Mishra D, Kim D J, Ralph D E, et al. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs[J]. Hydrometallurgy, 2007, 88(1/2/3/4): 202-209. |
14 | Amiri F, Yaghmaei S, Mousavi S M, et al. Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger[J]. Hydrometallurgy, 2011, 109(1/2): 65-71. |
15 | Gholami R M, Borghei S M, Mousavi S M. Fungal leaching of hazardous heavy metals from a spent hydrotreating catalyst[J]. International Journal of Chemical and Molecular Engineering, 2011, 5(4): 362-367. |
16 | 贺菊花, 张莹琦, 程刚. 城镇污泥重金属去除技术研究进展[J]. 应用化工, 2015, 44(8): 1541-1545. |
He J H, Zhang Y Q, Cheng G. Research progress in technologies of heavy metals from urban sewage sludge[J]. Applied Chemical Industry, 2015, 44(8): 1541-1545. | |
17 | 刁维强, 王祖伟, 徐喆, 等. 一株黑曲霉的筛选及其对河道底泥重金属的生物淋滤去除[J]. 生态学杂志, 2019, 38(4): 1067-1074. |
Diao W Q, Wang Z W, Xu Z, et al. Isolation of Aspergillus niger SY1 and its role in bioleaching of heavy metals from contaminated river sediments[J]. Chinese Journal of Ecology, 2019, 38(4): 1067-1074. | |
18 | 周顺桂, 周立祥, 黄焕忠. 生物淋滤技术在去除污泥中重金属的应用[J]. 生态学报, 2002, 22(1): 125-133. |
Zhou S G, Zhou L X, Huang H Z. Removal of heavy metals from sewage sludge by bioleaching[J]. Acta Ecologica Sinica, 2002, 22(1): 125-133. | |
19 | 周顺桂, 胡佩, 雷发懋. Tween-80对生物淋滤法去除垃圾焚烧飞灰中重金属的影响[J]. 环境科学研究, 2006, 19(2): 82-85. |
Zhou S G, Hu P, Lei F M. Leaching heavy metals from MSWI fly ash by using Acidithiobacillus thiooxidans in the presence of a surfactant agent[J]. Research of Environmental Sciences, 2006, 19(2): 82-85. | |
20 | 吴庭吉, 汪群慧, 杨洁, 等. 利用响应面法优化生物淋滤飞灰处理条件的研究[J]. 中国环境科学, 2009, 29(7): 738-744. |
Wu T J, Wang Q H, Yang J, et al. Optimization on bioleaching factors of municipal solid waste incineration fly ash using response surface methodology[J]. China Environmental Science, 2009, 29(7): 738-744. | |
21 | 彭昌盛, 孟柯, 臧小龙, 等. 微生物淋滤在重金属污染土壤修复中的研究进展[J]. 环境污染与防治, 2016, 38(3): 77-81, 89. |
Peng C S, Meng K, Zang X L, et al. Research progress of microbial leaching in remediation of heavy metal polluted soil[J]. Environmental Pollution and Control, 2016, 38(3): 77-81, 89. | |
22 | 周普雄, 严勰, 余震, 等. 生物淋滤联合类Fenton反应去除污染土壤中重金属的效果[J]. 环境科学, 2016, 37(9): 3575-3581. |
Zhou P X, Yan X, Yu Z, et al. Performance of bioleaching combined with Fenton-like reaction in heavy metals removal from contaminated soil[J]. Environmental Science, 2016, 37(9): 3575-3581. | |
23 | 辛宝平, 朱庆荣, 李是珅, 等. 生物淋滤溶出废旧锂离子电池中钴的研究[J]. 北京理工大学学报, 2007, 27(6): 551-555. |
Xin B P, Zhu Q R, Li S K, et al. Study on the release of Co from retrieved Li-ion batteries by bioleaching[J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 551-555. | |
24 | 朱庆荣, 辛宝平, 李是坤, 等. 生物淋滤直接浸出废旧电池中有毒重金属的实验研究[J]. 环境化学, 2007, 26(5): 646-650. |
Zhu Q R, Xin B P, Li S K, et al. Experiment research on releasing heavy metal from wasted batteries by bioleaching[J]. Environmental Chemistry, 2007, 26(5): 646-650. | |
25 | Aung K M M, Ting Y P. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger[J]. Journal of Biotechnology, 2005, 116(2): 159-170. |
26 | Muddanna M H, Baral S S. Leaching of nickel and vanadium from the spent fluid catalytic cracking catalyst by reconnoitering the potential of Aspergillus niger associating with chemical leaching[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 103025. |
27 | 李丹丹. FCC废催化剂的无害化及水处理应用研究[D]. 北京: 北京化工大学, 2016. |
Li D D. Research on harmlessness and the water treatment of waste FCC catalysts[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
28 | 刘腾, 邱兆富, 杨骥, 等. 废FCC催化剂的形态、成分分析及环境风险评价[J]. 无机盐工业, 2016, 48(11): 71-74. |
Liu T, Qiu Z F, Yang J, et al. Morphological, composition analysis, and environmental risks assessment of spent FCC catalysts[J]. Inorganic Chemicals Industry, 2016, 48(11): 71-74. | |
29 | Beolchini F, Fonti V, Ferella F, et al. Metal recovery from spent refinery catalysts by means of biotechnological strategies[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 529-534. |
30 | Bharadwaj A, Ting Y P. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: leaching mechanism and effect of decoking[J]. Bioresource Technology, 2013, 130: 673-680. |
31 | Vyas S, Ting Y P. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst[J]. Chemosphere, 2016, 160: 7-12. |
32 | Ferreira P F, Sérvulo E F C, Da Costa A C A, et al. Bioleaching of metals from a spent diesel hydrodesulfurization catalyst employing Acidithiobacillus thiooxidans FG-01[J]. Brazilian Journal of Chemical Engineering, 2017, 34(1): 119-129. |
33 | Santhiya D, Ting Y P. Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst[J]. Journal of Biotechnology, 2006, 121(1): 62-74. |
34 | 周宁波, 肖华, 陈韬, 等. 炼油废催化剂中分离有害重金属工艺条件研究[J]. 无机盐工业, 2014, 46(1): 69-72. |
Zhou N B, Xiao H, Chen T, et al. Separation technology of harmful heavy metals from waste oil-refining catalyst[J]. Inorganic Chemicals Industry, 2014, 46(1): 69-72. | |
35 | 张宏哲, 郭磊, 刘政伟, 等. 废催化裂化催化剂的危险性及污染特征[J]. 化工环保, 2019, 39(2): 231-234. |
46 | Amiri F, Yaghmaei S, Mousavi S M. Comparison of different methods in bioleaching of tungsten-rich spent hydro-cracking catalyst using adapted Penecillum simplicissimum BBRC-20019[J]. Chemical Engineering Transactions, 2010, 21: 1483-1488. |
47 | Amiri F, Mousavi S M, Yaghmaei S. Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum[J]. Separation and Purification Technology, 2011, 80(3): 566-576. |
48 | Amiri F, Yaghmaei S, Mousavi S M. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum[J]. Bioresource Technology, 2011, 102(2): 1567-1573. |
49 | Amiri F, Mousavi S M, Yaghmaei S, et al. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions[J]. Biochemical Engineering Journal, 2012, 67: 208-217. |
50 | Gerayeli F, Ghojavand F, Mousavi S M, et al. Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium[J]. Separation and Purification Technology, 2013, 118: 151-161. |
51 | Shahrabi-Farahani M, Yaghmaei S, Mousavi S M, et al. Bioleaching of heavy metals from a petroleum spent catalyst using Acidithiobacillus thiooxidans in a slurry bubble column bioreactor[J]. Separation and Purification Technology, 2014, 132: 41-49. |
52 | Gholami R M, Borghei S M, Mousavi S M. Bacterial leaching of a spent Mo-Co-Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J]. Hydrometallurgy, 2011, 106(1/2): 26-31. |
53 | Vyas S, Ting Y P. Effect of ultrasound on bioleaching of hydrodesulphurization spent catalyst[J]. Environmental Technology & Innovation, 2019, 14: 100310. |
54 | Beolchini F, Fonti V, Ferella F, et al. Bioleaching of nickel, vanadium and molybdenum from spent refinery catalysts [J]. Advanced Materials Research, 2009, 71/72/73: 657-660. |
55 | Mishra D, Ahn J G, Kim D J, et al. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 1231-1236. |
56 | Aung K M M. Bioleaching of metals from spent catalysts for metal removal/recovery[D]. Singapore: National University of Singapore, 2005. |
57 | Srichandan H, Singh S, Blight K, et al. An integrated sequential biological leaching process for enhanced recovery of metals from decoked spent petroleum refinery catalyst: a comparative study[J]. International Journal of Mineral Processing, 2015, 134: 66-73. |
58 | Pathak A, Srichandan H, Kim D J. Feasibility of bioleaching in removing metals (Al, Ni, V and Mo) from as received raw petroleum spent refinery catalyst: a comparative study on leaching yields, risk assessment code and reduced partition index[J]. Materials Transactions, 2015, 56(8): 1278-1286. |
59 | Pradhan D, Mishra D, Kim D J, et al. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 267-273. |
60 | Pradhan D, Patra A K, Kim D J, et al. A novel sequential process of bioleaching and chemical leaching for dissolving Ni, V, and Mo from spent petroleum refinery catalyst[J]. Hydrometallurgy, 2013, 131/132: 114-119. |
61 | Kim D J, Pradhan D, Ahn J G, et al. Enhancement of metals dissolution from spent refinery catalysts using adapted bacteria culture—effects of pH and Fe (Ⅱ)[J]. Hydrometallurgy, 2010, 103(1/2/3/4): 136-143. |
62 | Kim D J, Srichandan H, Gahan C S, et al. Thermophilic bioleaching of spent petroleum refinery catalyst using Sulfolobus metallicus[J]. Canadian Metallurgical Quarterly, 2012, 51(4): 403-412. |
63 | Pradhan D, Kim D J, Ahn J G, et al. Microbial leaching process to recover valuable metals from spent petroleum catalyst using iron oxidizing bacteria[J]. World Academy of Science, Engineering and Technology, 2010, 38: 958-962. |
64 | Srichandan H, Singh S, Pathak A, et al. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size[J]. Journal of Environmental Science and Health, Part A, 2014, 49(7): 807-818. |
65 | Vyas S, Ting Y P. Microbial leaching of heavy metals using Escherichia coli and evaluation of bioleaching mechanism[J]. Bioresource Technology Reports, 2020, 9: 100368. |
66 | Abdel-Aal E A, Rashad M M. Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid[J]. Hydrometallurgy, 2004, 74(3/4): 189-194. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[14] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||