化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1409-1418.DOI: 10.11949/0438-1157.20200756
倪佳1(),孙雪艳1,税子怡1,贺飞鸿2,惠小敏3,朱亮亮1(),陈曦4()
收稿日期:
2020-06-16
修回日期:
2020-10-23
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
朱亮亮,陈曦
作者简介:
倪佳(1996—),女,硕士研究生,基金资助:
NI Jia1(),SUN Xueyan1,SHUI Ziyi1,HE Feihong2,HUI Xiaomin3,ZHU Liangliang1(),CHEN Xi4()
Received:
2020-06-16
Revised:
2020-10-23
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHU Liangliang,CHEN Xi
摘要:
湿法再生阴离子交换树脂膜材料,可通过调控湿度驱动CO2的吸附与脱附,材料再生成本极低。该材料需经过高温水热预处理张开孔结构,增强气体扩散速率,能耗较高;此外,利用液态水润湿材料以驱动脱附时,材料的解吸比(脱附量/吸附量)只有~30%。通过系统研究不同预处理水温及时间下膜材料的CO2吸附/脱附性能,发现采用常温水浸泡预处理亦可获得良好的材料微观孔结构以及碳捕集性能,显著降低预处理能耗;更重要的是,基于微观尺度的气体吸附和液体浸润相关理论,实验发现超声雾化所获得的微米级水颗粒,由于更易扩散进入孔隙,可将解吸比从~30%提升到~60%,极大提升了树脂膜材料的再生性能。这些预处理能耗与脱附性能的优化,为大规模空气捕集的工程化实施提供了有利条件。
中图分类号:
倪佳, 孙雪艳, 税子怡, 贺飞鸿, 惠小敏, 朱亮亮, 陈曦. 湿法再生CO2空气捕集材料的能耗与性能优化[J]. 化工学报, 2021, 72(3): 1409-1418.
NI Jia, SUN Xueyan, SHUI Ziyi, HE Feihong, HUI Xiaomin, ZHU Liangliang, CHEN Xi. Energy consumption and performance optimization of moisture swing sorbents for direct air capture of CO2[J]. CIESC Journal, 2021, 72(3): 1409-1418.
厚度/mm | 含水率/% | 离子交换容量/ (mol/kg) | 尺寸变化率/% | 爆破强度/ MPa | |
---|---|---|---|---|---|
厚度变化率 | 线性溶胀度 | ||||
0.42±0.04 | 35~45 | ≥1.8 | ≤80 | ≤13 | >0.3 |
表1 聚乙烯异相阴离子交换树脂膜的详细参数
Table 1 Manufacturer data on the commercial heterogeneous polyethylene anion exchange membrane
厚度/mm | 含水率/% | 离子交换容量/ (mol/kg) | 尺寸变化率/% | 爆破强度/ MPa | |
---|---|---|---|---|---|
厚度变化率 | 线性溶胀度 | ||||
0.42±0.04 | 35~45 | ≥1.8 | ≤80 | ≤13 | >0.3 |
预处理方法 | Qe/(mmol/g) | k1/min-1 | k2/min-1 | R2 | 吸附平衡 时间/min |
---|---|---|---|---|---|
水热处理48 h | 0.77 | 0.035 | 0.159 | 0.9992 | 160 |
常温水浸泡5 d | 0.78 | 0.026 | 0.037 | 0.9991 | 180 |
表2 QAR500膜材料MPFO理论模型拟合吸附参数
Table 2 Fitting adsorption parameters of the MPFO model for QAR500 sheets
预处理方法 | Qe/(mmol/g) | k1/min-1 | k2/min-1 | R2 | 吸附平衡 时间/min |
---|---|---|---|---|---|
水热处理48 h | 0.77 | 0.035 | 0.159 | 0.9992 | 160 |
常温水浸泡5 d | 0.78 | 0.026 | 0.037 | 0.9991 | 180 |
脱附方法 | 预处理方法 | Qe/(mmol/g) | 解吸比Rdes/% | k1/min-1 | k2/min-1 | R2 | 脱附平衡时间/min |
---|---|---|---|---|---|---|---|
超声加湿 | 水热处理 (48 h) | 0.530 | 68.83 | 0.223 | 0.092 | 0.9960 | 40 |
常温水浸泡 (5 d) | 0.510 | 65.38 | 0.205 | 0.099 | 0.9980 | 40 | |
浸润加湿 | 水热处理 (48 h) | 0.240 | 31.17 | 0.869 | 0.078 | 0.9920 | 40 |
常温水浸泡 (5 d) | 0.210 | 26.92 | 0.826 | 0.077 | 0.9960 | 40 | |
自然蒸发加湿 | 水热处理 (48 h) | 0.170 | 22.08 | 0.156 | 0.076 | 0.9912 | 40 |
常温水浸泡 (5 d) | 0.160 | 20.51 | 0.142 | 0.073 | 0.9933 | 40 |
表3 不同脱附方法下MPFO模型拟合脱附参数
Table 3 Fitting desorption parameters of the MPFO model for QAR500 sheets with different humidification methods
脱附方法 | 预处理方法 | Qe/(mmol/g) | 解吸比Rdes/% | k1/min-1 | k2/min-1 | R2 | 脱附平衡时间/min |
---|---|---|---|---|---|---|---|
超声加湿 | 水热处理 (48 h) | 0.530 | 68.83 | 0.223 | 0.092 | 0.9960 | 40 |
常温水浸泡 (5 d) | 0.510 | 65.38 | 0.205 | 0.099 | 0.9980 | 40 | |
浸润加湿 | 水热处理 (48 h) | 0.240 | 31.17 | 0.869 | 0.078 | 0.9920 | 40 |
常温水浸泡 (5 d) | 0.210 | 26.92 | 0.826 | 0.077 | 0.9960 | 40 | |
自然蒸发加湿 | 水热处理 (48 h) | 0.170 | 22.08 | 0.156 | 0.076 | 0.9912 | 40 |
常温水浸泡 (5 d) | 0.160 | 20.51 | 0.142 | 0.073 | 0.9933 | 40 |
1 | Kumar A, Madden D G, Lusi M, et al. Direct air capture of CO2 by physisorbent materials[J]. Angewandte Chemie (International Ed. in English), 2015, 54(48): 14372-14377. |
2 | Van Vuuren D P, Meinshausen M, Plattner G K, et al. Temperature increase of 21st century mitigation scenarios[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15258-15262. |
3 | Smith J B, Schneider S H, Oppenheimer M, et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11): 4133-4137. |
4 | van Vuuren D, Nakicenovic N, Riahi K, et al. An energy vision: the transformation towards sustainability—interconnected challenges and solutions[J]. Current Opinion in Environmental Sustainability, 2012, 4(1): 18-34. |
5 | Masson-Delmotte V, Zhai P, Pörtner H O, et al. An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, development sustainable, and efforts to eradicate poverty[R]. Switzerland: World Meteorological Organization, 2018. |
6 | Folger P. Carbon capture and sequestration (CCS) in the United States[R]. Washington: Congressional Research Service, 2017. |
7 | Yang Z Q, He C Q, Sui H, et al. Recent advances of CO2-responsive materials in separations[J]. Journal of CO2 Utilization, 2019, 30: 79-99. |
8 | 科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图: 2019[M]. 北京: 科学出版社, 2019. |
Department of Science and Technology for Social Development, Ministry of Science and Technology of the People's Republic of China, the Administrative Center of China's Agenda21. China's Roadmap of Carbon Capture Utilization and Storage Technology Development (2019)[M]. Beijing: Science Press, 2019. | |
9 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
10 | 郑碏, 董立户, 陈健, 等. CO2捕集的吸收溶解度计算和过程模拟[J]. 化工学报, 2010, 61(7): 1740-1746. |
Zheng Q, Dong L H, Chen J, et al. Absorption solubility calculation and process simulation for CO2 capture[J]. CIESC Journal, 2010, 61(7): 1740-1746. | |
11 | Olivier J G J, Janssens-Maenhout G, Muntean M, et al. Trends in global CO2 emissions: 2013 report[EB/OL]. [2014-12-16]. |
12 | Shi X Y, Xiao H, Azarabadi H, et al. Sorbents for the direct capture of CO2 from ambient air[J]. Angewandte Chemie International Edition, 2020, 59(18): 6984-7006. |
13 | Wang T, Lackner K S, Wright A. Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science & Technology, 2011, 45(15): 6670-6675. |
14 | Lackner K, Ziock H J, Grimes P. Carbon dioxide extraction from air: is it an option?[R]. United States: Los Alamos National Laboratory, 1999. |
15 | Fasihi M, Efimova O, Breyer C. Techno-economic assessment of CO2 direct air capture plants[J]. Journal of Cleaner Production, 2019, 224: 957-980. |
16 | Leeson D, Mac Dowell N, Shah N, et al. A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources[J]. International Journal of Greenhouse Gas Control, 2017, 61: 71-84. |
17 | Bos M, Kroeze V, Sutanto S, et al. Evaluating regeneration options of solid amine sorbent for CO2 removal[J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 11141-11153. |
18 | Bollini P, Didas S A, Jones C W. Amine-oxide hybrid materials for acid gas separations[J]. Journal of Materials Chemistry, 2011, 21(39): 15100-15120. |
19 | Stuckert N R, Yang R T. CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15[J]. Environmental Science & Technology, 2011, 45(23): 10257-10264. |
20 | Shi X Y, Xiao H, Lackner K S, et al. Capture CO2 from ambient air using nanoconfined ion hydration[J]. Angewandte Chemie International Edition, 2016, 55(12): 4026-4029. |
21 | Shi X Y, Xiao H, Kanamori K, et al. Moisture-driven CO2 sorbents[J]. Joule, 2020, 4(8): 1823-1837. |
22 | Parvazinia M, Garcia S, Maroto-Valer M. CO2 capture by ion exchange resins as amine functionalised adsorbents[J]. Chemical Engineering Journal, 2018, 331: 335-342. |
23 | Wang X R, Song J Z, Chen Y, et al. CO2 absorption over ion exchange resins: the effect of amine functional groups and microporous structures[J]. Industrial & Engineering Chemistry Research, 2020, 59(38): 16507-16515. |
24 | van der Giesen C, Meinrenken C J, Kleijn R, et al. A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture[J]. Environmental Science & Technology, 2017, 51(2): 1024-1034. |
25 | Yang X Y, Al-Duri B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon[J]. Journal of Colloid and Interface Science, 2005, 287(1): 25-34. |
26 | Li J L, Henni A, Tontiwachwuthikul P. Reaction kinetics of CO2 in aqueous ethylenediamine, ethyl ethanolamine, and diethyl monoethanolamine solutions in the temperature range of 298-313 K, using the stopped-flow technique[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4426-4434. |
27 | Sarı A, Şahinoğlu G, Tüzen M. Antimony(Ⅲ) adsorption from aqueous solution using raw perlite and Mn-modified perlite: equilibrium, thermodynamic, and kinetic studies[J]. Industrial & Engineering Chemistry Research, 2012, 51(19): 6877-6886. |
28 | Song J Z, Zhu L L, Shi X Y, et al. Moisture swing ion-exchange resin-PO4 sorbent for reversible CO2 capture from ambient air[J]. Energy & Fuels, 2019, 33(7): 6562-6567. |
29 | Song J Z, Liu J, Zhao W, et al. Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 4941-4948. |
30 | Chen X, Xu B X, Liu L. Nanoscale fluid mechanics and energy conversion[J]. Applied Mechanics Reviews, 2014, 66(5): 050803. |
31 | 丁华, 汤桂华. 转化系统气体换热器总传热系数及压降的统计关联式[J]. 硫酸工业, 1997, (4): 15-18, 60. |
Ding H, Tang G H. Design consideration of 80 kt/a sulphur-burning sulphuric acid plants[J]. Sulphuric Acid Industry, 1997, (4): 15-18, 60. | |
32 | 刘永贞. 管壳式换热器传热系数影响因素分析[J]. 科技经济导刊, 2016, (13): 48,50. |
Liu Y Z. Analysis of influencing factors on heat transfer coefficient of shell and tube heat exchanger [J]. Technology and Economic Guide, 2016, (13): 48,50. | |
33 | 黄晨. 大型循环流化床锅炉炉内受热面对流传热特性研究[D]. 杭州: 浙江大学, 2012. |
Huang C. Investigation of convective heat transfer in a large circulating fluidized bed[D]. Hangzhou: Zhejiang University, 2012. | |
34 | 舟丹. 节约1度(kW·h)电或1 kg煤到底减排了多少“二氧化碳”或“碳”?[J]. 中外能源, 2011, 16(11): 58. |
Zhou D. How much “carbon dioxide” or “carbon” can be reduced by saving 1 kW•h electricity or 1 kg coal? [J]. Sino-Global Energy, 2011, 16(11): 58. | |
35 | 涂华, 刘翠杰. 标准煤二氧化碳排放的计算[J]. 煤质技术, 2014(2): 57-60. |
Tu H, Liu C J. Calculation of CO2 emission of standard coal[J]. Coal Quality Technology, 2014(2): 57-60. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[10] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[11] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[15] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||