化工学报 ›› 2021, Vol. 72 ›› Issue (4): 1987-1997.DOI: 10.11949/0438-1157.20201169
古新1(),宋帅1,张大波2,方运阁1,陈卫杰1,王永庆1()
收稿日期:
2020-08-17
修回日期:
2020-10-29
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
王永庆
作者简介:
古新(1978—),男,博士,教授,基金资助:
GU Xin1(),SONG Shuai1,ZHANG Dabo2,FANG Yunge1,CHEN Weijie1,WANG Yongqing1()
Received:
2020-08-17
Revised:
2020-10-29
Online:
2021-04-05
Published:
2021-04-05
Contact:
WANG Yongqing
摘要:
双扭转流换热器是一种新型管壳式换热器,分别建立扭转流换热器和新型双扭转流换热器的周期全截面计算模型,利用计算流体力学(CFD)方法对壳体侧的传热系数、流动阻力和综合性能进行了数值研究。结果表明:在壳程同等质量流量下,双扭转流换热器传热系数与类梯形折流板换热器相比降低24.4%~27.9%,压降降低63.3%~71.0%,综合性能增加1.2%~4.1%。通过场协同原理对其传热和降阻机理进行了分析,表明双扭转流换热器速度与压力梯度协同较好,扭转流换热器速度与温度梯度协同性较好。对扭转流换热器进行冷模实验,采用激光多普勒测速仪(LDV)对线上速度进行测量,验证了仿真方法和结果的正确性和准确性。研究模型与结论可为换热器的结构开发与性能研究提供参考。
中图分类号:
古新, 宋帅, 张大波, 方运阁, 陈卫杰, 王永庆. 一种双扭转流换热器壳程传热性能与机理分析[J]. 化工学报, 2021, 72(4): 1987-1997.
GU Xin, SONG Shuai, ZHANG Dabo, FANG Yunge, CHEN Weijie, WANG Yongqing. Analysis of heat transfer performance and mechanism of a double torsion flow heat exchanger[J]. CIESC Journal, 2021, 72(4): 1987-1997.
参数 | 数值 |
---|---|
筒体直径D/mm | 185 |
换热管长度L/mm | 200 |
换热管数量 | 37 |
换热管外径d0/mm | 19 |
换热管间距tp/mm | 25 |
换热管排列方式 | 正三角形 |
折流板宽度W/mm | 80 |
折流板倾斜角度θ/(°) | 45 |
折流板间距B/mm | 100 |
表1 换热器模型基本结构参数
Table 1 Basic structure parameters of the heat exchanger model
参数 | 数值 |
---|---|
筒体直径D/mm | 185 |
换热管长度L/mm | 200 |
换热管数量 | 37 |
换热管外径d0/mm | 19 |
换热管间距tp/mm | 25 |
换热管排列方式 | 正三角形 |
折流板宽度W/mm | 80 |
折流板倾斜角度θ/(°) | 45 |
折流板间距B/mm | 100 |
名称 | 规格与型号 |
---|---|
转子流量计 | 型号LZB-50,精度2.0级 |
潜水泵 | 型号MJ-NS 6500,最大扬程3.5 m |
示踪粒子 | 型号10089(球型),密度0.00105~0.00115 kg·m-3 |
表2 实验用仪表汇总
Table 2 Summary of experimental instruments
名称 | 规格与型号 |
---|---|
转子流量计 | 型号LZB-50,精度2.0级 |
潜水泵 | 型号MJ-NS 6500,最大扬程3.5 m |
示踪粒子 | 型号10089(球型),密度0.00105~0.00115 kg·m-3 |
1 | Bhowmik C, Bhowmik S, Ray A. Optimal green energy source selection: an eclectic decision[J]. Energy & Environment, 2020, 31(5): 842-859. |
2 | 胡博然, 夏志坚. 中国换热器产业发展现状及前景展望[J]. 计算机产品与流通, 2017, (12): 149. |
Hu B R, Xia Z J. The development status and prospects of China's heat exchanger industry[J]. Computer Products and Circulation, 2017, (12): 149. | |
3 | 黄蕾, 黄庆军. 世界换热器产业发展现状综述[J]. 石油和化工设备, 2011, 14(3):5-10. |
Huang L, Huang Q J. Status and trends of world's heat exchanger industries[J]. Petro & Chemical Equipment, 2011, 14(3):5-10. | |
4 | Zhang D, Li Y F, Sun H F, et al. Energy recovery enhancement of heat exchanger network by mixing and azeotrope formation[J]. Chemical Engineering Science, 2020, 228: 115992. |
5 | Zaino N L, Steele K M, Donelan J M, et al. Energy consumption does not change after selective dorsal rhizotomy in children with spastic cerebral palsy[J]. Developmental Medicine & Child Neurology, 2020, 62(9): 1047-1053. |
6 | Jahanbin A. Thermal performance of the vertical ground heat exchanger with a novel elliptical single U-tube[J]. Geothermics, 2020, 86: 101804. |
7 | 齐洪洋, 高磊, 张莹莹, 等. 管壳式换热器强化传热技术概述[J]. 压力容器, 2012, 29(7): 73-78. |
Qi H Y, Gao L, Zhang Y Y, et al. Overview of the shell and tube heat exchangers about heat transfer enhancement technology[J]. Pressure Vessel Technology, 2012, 29(7): 73-78. | |
8 | Kong L J, Liu Z G, Jia L, et al. Experimental study on flow and heat transfer characteristics at onset of nucleate boiling in micro pin fin heat sinks[J]. Experimental Thermal and Fluid Science, 2020, 115: 109946. |
9 | Sheikholeslami M, Gorji-Bandpy M, Ganji D D. Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 444-469. |
10 | 汪波, 茅靳丰, 耿世彬, 等. 国内换热器的研究现状与展望[J]. 制冷与空调, 2010, 24(5): 61-65. |
Wang B, Mao J F, Geng S B, et al. Present state and perspectives of research on domestic heat-exchanger[J]. Refrigeration & Air Conditioning, 2010, 24(5): 61-65. | |
11 | 张奇. 如何提高换热器的换热效率[J]. 中国金属通报, 2019, (11): 160-161. |
Zhang Q. How to improve the heat transfer efficiency of heat exchangers [J]. China Metal Bulletin, 2019, (11): 160-161. | |
12 | 王英双, 刘志春, 黄素逸, 等. 新型折流杆换热器的流动与传热数值模拟[J]. 化工进展, 2010, 29(7): 1205-1208. |
Wang Y S, Liu Z C, Huang S Y, et al. Fluid flow and heat transfer in rod baffle heat exchanger shell side[J]. Chemical Industry and Engineering Progress, 2010, 29(7): 1205-1208. | |
13 | Ma L, Wang K, Liu M S, et al. Numerical study on performances of shell-side in trefoil-hole and quatrefoil-hole baffle heat exchangers[J]. Applied Thermal Engineering, 2017, 123: 1444-1455. |
14 | 李亚子, 雷勇刚, 吕永康, 等. 斜百叶片支撑多管束受限外流传热和阻力特性[J]. 高校化学工程学报, 2017, 31(3): 579-585. |
Li Y Z, Lei Y G, Lyu Y K, et al. Heat transfer and flow resistance of confined external flow in louver baffle supported tube bundles[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 579-585. | |
15 | 马璐, 王珂, 王永庆, 等. 帘式折流片换热器壳程热力特性的数值研究[J]. 化学工程, 2016, 44(12): 26-30. |
Ma L, Wang K, Wang Y Q, et al. Numerical research on thermodynamic characteristics in shell-side of shell-and-tube heat exchanger with shutter baffles[J]. Chemical Engineering (China), 2016, 44(12): 26-30. | |
16 | 古新, 郝建设, 刘敏珊, 等. 帘式折流片换热器壳程流体流动和传热周期性充分发展区域长度界定研究[J]. 高校化学工程学报, 2014, 28(2): 240-245. |
Gu X, Hao J S, Liu M S, et al. Research on define the length of periodic fully developed region for fluid flow and heat transfer characteristics in shell side of shutter baffle heat exchanger[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 240-245. | |
17 | 朱培纳. 帘式折流片换热器入口流场均化及其壳程结构优化研究[D]. 郑州: 郑州大学, 2013. |
Zhu P N. Research on the flow field homogenization at entrance and the shell structure optimization of the shutter baffle heat exchanger[D]. Zhengzhou: Zhengzhou University, 2013. | |
18 | Mukherjee R, 刘民强. 双弓形折流板管壳换热器[J]. 石油化工设备技术, 1993, 14(5): 17-20. |
Mukherjee R, Liu M Q. Shell and tube heat exchanger with double-bow baffles [J]. Petro-Chemical Equipment Technology, 1993, 14(5): 17-20. | |
19 | 赵景玉, 黄英, 赵石军. 大型管壳式换热器的设计与制造[J]. 压力容器, 2015, 32(3): 36-44, 75. |
Zhao J Y, Huang Y, Zhao S J. Designing and fabrication of super- sized tubular heat exchanger[J]. Pressure Vessel Technology, 2015, 32(3): 36-44, 75. | |
20 | 高宏宇. 曲面弓形折流板换热器的研究[D]. 北京: 北京化工大学, 2010. |
Gao H Y. Research of curved baffle heat exchanger[D]. Beijing: Beijing University of Chemical Technology, 2010. | |
21 | 曾志伟, 董云风. 管壳式换热器单弓形折流板换新技术分析[J]. 广东造船, 2019, 38(6): 81-84. |
Zeng Z W, Dong Y F. Replacement of single segmental baffle for tube-shell type heat exchanger[J]. Guangdong Shipbuilding, 2019, 38(6): 81-84. | |
22 | 赵书培, 谭国锋, 王珂, 等. 扇叶型折流板换热器壳程性能及传热机理的数值模拟[J]. 低温工程, 2018, (5): 33-38, 66. |
Zhao S P, Tan G F, Wang K, et al. Numerical simulation of shell side performance and heat transfer mechanism of blade baffle heat exchanger[J]. Cryogenics, 2018, (5): 33-38, 66. | |
23 | 杨程, 杨红平, 王涛. 连续拼接型螺旋折流板换热器壳程内流场与温度场模拟研究[J]. 热能动力工程, 2017, 32(10): 16-23, 138. |
Yang C, Yang H P, Wang T. Numerical study of the flow and temperature field at the shell side of a continuous put-together type helical baffle heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(10): 16-23, 138. | |
24 | 王秋旺. 螺旋折流板管壳式换热器壳程传热强化研究进展[J]. 西安交通大学学报, 2004, 38(9): 881-886. |
Wang Q W. Current status and development of shell-side heat transfer enhancement of shell-and-tube heat exchangers with helical baffles[J]. Journal of Xi'an Jiaotong University, 2004, 38(9): 881-886. | |
25 | 古新, 罗元坤, 熊晓朝, 等. 类梯形倾斜折流板管壳式换热器: 106440882B[P]. 2017-02-22. |
Gu X, Luo Y K, Xiong X C, et al. Shell-and-tube heat exchanger with trapezoidal inclined baffle: 106440882B[P]. 2017-02-22. | |
26 | Gu X, Luo Y K, Xiong X C, et al. Numerical and experimental investigation of the heat exchanger with trapezoidal baffle[J]. International Journal of Heat and Mass Transfer, 2018, 127: 598-606. |
27 | 熊晓朝. 扭转流动传热强化机理和新型高效换热器性能研究[D]. 郑州: 郑州大学, 2018. |
Xiong X Z. Research on the enhanced mechanism of torsional flow heat transfer and the performance of a new high-efficiency heat exchanger [D]. Zhengzhou: Zhengzhou University, 2018. | |
28 | 王通通. 基于正交型折流板的新型双扭转流换热器开发与优化[D]. 郑州: 郑州大学, 2020. |
Wang T T. Development and optimization of a new type of double torsion flow heat exchanger based on orthogonal baffles. Zhengzhou: Zhengzhou University, 2020. | |
29 | 古新, 董其伍, 刘敏珊. 周期性模型在管壳式换热器数值模拟中的应用[J]. 热能动力工程, 2008, 23(1): 64-68, 107-108. |
Gu X, Dong Q W, Liu M S. Application of a periodic model in the numerical simulation of shell-and-tube heat exchangers[J]. Journal of Engineering for Thermal Energy and Power, 2008, 23(1): 64-68, 107-108. | |
30 | Kim T. Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks[J]. Annals of Nuclear Energy, 2013, 57: 209-215. |
31 | 陈晓彦, 黄云云, 张朱武, 等. 模拟分析壳程结构参数对缠绕管式换热器综合性能的影响[J]. 福州大学学报(自然科学版), 2020, 48(1): 110-115. |
Chen X Y, Huang Y Y, Zhang Z W, et al. Simulation analysis on the effect of shell side structural parameters on the heat transfer and flow performance of wound-tube heat exchanger[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(1): 110-115. | |
32 | 何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906. |
He Y L, Lei Y G, Tian L T, et al. An analysis of three-field synergy on heat transfer augmentation with low penalty of pressure drop[J]. Journal of Engineering Thermophysics, 2009, 30(11): 1904-1906. | |
33 | 陈益萍. 激光多普勒测速技术原理及其应用[J]. 电子世界, 2013, (7): 35-37. |
Chen Y P. Principle of laser Doppler velocimetry and its application[J]. Electronics World, 2013, (7): 35-37. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[6] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[9] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[10] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[11] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[12] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[13] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[14] | 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508. |
[15] | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||