化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2006-2017.DOI: 10.11949/0438-1157.20200916
收稿日期:
2020-07-07
修回日期:
2020-12-11
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
齐聪
作者简介:
齐聪(1983—),男,博士,副教授,基金资助:
QI Cong(),LI Ke'ao,LI Chunyang
Received:
2020-07-07
Revised:
2020-12-11
Online:
2021-04-05
Published:
2021-04-05
Contact:
QI Cong
摘要:
为了改善传统换热器和换热介质的传热效率,通过两步法制备了不同质量分数(0.1%,0.2%,0.3%,0.4%,0.5%)的TiO2-水纳米流体,发展了不同微肋结构(竖直肋片和环形肋片)的绕流圆柱换热系统,通过实验研究了圆柱表面微肋结构的类型(竖直肋片和环形肋片)及数量(N1(2)=4,6,8)、纳米颗粒的质量分数(ω=0, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%)、Reynolds数(Re=514~1205)对绕流圆柱换热系统的影响。结果表明,纳米颗粒的添加和微肋结构能有效提高传热效率,圆柱表面温度明显降低,其中质量分数为0.4%的纳米流体在竖直肋片数量为6时表现出更好的换热性能。
中图分类号:
齐聪, 李可傲, 李春阳. 微肋结构对纳米流体绕流圆柱热性能的影响[J]. 化工学报, 2021, 72(4): 2006-2017.
QI Cong, LI Ke'ao, LI Chunyang. Influence of micro-rib structures on thermal performance of nanofluids flowing around circular cylinders[J]. CIESC Journal, 2021, 72(4): 2006-2017.
种类 | ρ/(kg·m-3) | cp/(J·kg-1·K-1) | μ/(Pa·s) | λ/(W·m-1·K-1) |
---|---|---|---|---|
去离子水 | 997.1 | 4179 | 0.001004 | 0.6130 |
TiO2 纳米颗粒 | 4250 | 686.2 | ─ | 8.9538 |
0.1%TiO2纳米流体 | 997.9 | 4178.2 | 0.0010046 | 0.6134 |
0.2%TiO2纳米流体 | 998.6 | 4177.4 | 0.0010052 | 0.6137 |
0.3%TiO2纳米流体 | 999.4 | 4176.5 | 0.0010058 | 0.6141 |
0.4%TiO2纳米流体 | 1000.2 | 4175.7 | 0.0010064 | 0.6144 |
0.5%TiO2纳米流体 | 1000.9 | 4174.9 | 0.001007 | 0.6148 |
表1 纳米流体热物性参数
Table 1 Physical properties of nanofluids
种类 | ρ/(kg·m-3) | cp/(J·kg-1·K-1) | μ/(Pa·s) | λ/(W·m-1·K-1) |
---|---|---|---|---|
去离子水 | 997.1 | 4179 | 0.001004 | 0.6130 |
TiO2 纳米颗粒 | 4250 | 686.2 | ─ | 8.9538 |
0.1%TiO2纳米流体 | 997.9 | 4178.2 | 0.0010046 | 0.6134 |
0.2%TiO2纳米流体 | 998.6 | 4177.4 | 0.0010052 | 0.6137 |
0.3%TiO2纳米流体 | 999.4 | 4176.5 | 0.0010058 | 0.6141 |
0.4%TiO2纳米流体 | 1000.2 | 4175.7 | 0.0010064 | 0.6144 |
0.5%TiO2纳米流体 | 1000.9 | 4174.9 | 0.001007 | 0.6148 |
仪器 | 制造商 | 特性 |
---|---|---|
热电偶 | OMEGA | 型号:T型; 测温范围:0~200℃; 精度:±0.1% |
数据采集器 | Agilent | 型号:34970; 通道数目:22个; 精度:±0.004% |
低温恒温槽 | 上海衡平 | 型号:DC-2030A; 可调温度范围:-20~100℃; 精度:±0.02℃ |
直流电源 | MAISHENG | 输入电压:AC220V±10%; 工作环境:-10~70℃; 精度:±5% |
流量计 | 双环 | 型号:LZB-6; 精度:±1% |
压差传感器 | 重庆伟岸 | 测量范围:60~40 MPa; 精度:±0.25% |
表2 实验设备的详细信息
Table 2 Detail information of experimental instrument
仪器 | 制造商 | 特性 |
---|---|---|
热电偶 | OMEGA | 型号:T型; 测温范围:0~200℃; 精度:±0.1% |
数据采集器 | Agilent | 型号:34970; 通道数目:22个; 精度:±0.004% |
低温恒温槽 | 上海衡平 | 型号:DC-2030A; 可调温度范围:-20~100℃; 精度:±0.02℃ |
直流电源 | MAISHENG | 输入电压:AC220V±10%; 工作环境:-10~70℃; 精度:±5% |
流量计 | 双环 | 型号:LZB-6; 精度:±1% |
压差传感器 | 重庆伟岸 | 测量范围:60~40 MPa; 精度:±0.25% |
1 | Cai W H, Lai T, Dai W L, et al. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids[J]. Journal of Power Sources, 2014, 255: 170-178. |
2 | Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. Developments and Applications of Non-Newtonian Flows, 1995, 66: 99-105. |
3 | 陈巨辉, 韩坤, 王帅, 等. 基于反扰动非平衡分子动力学的纳米流体导热增强机理研究[J]. 化工学报, 2019, 70(6): 2147-2152. |
Chen J H, Han K, Wang S, et al. Study on thermal conductive enhancement mechanism of nanofluid based on anti-disturbance non-equilibrium molecular dynamics[J]. CIESC Journal, 2019, 70(6): 2147-2152. | |
4 | 吴晗, 杨峻. 多壁碳纳米管-水纳米流体导热机理及重力热管实验研究[J]. 化工学报, 2017, 68(6): 2315-2320. |
Wu H, Yang J. Thermal conduction mechanism of multi-walled carbon nanotubes-deionized water nanofluids and experimental research in gravity heat pipe[J]. CIESC Journal, 2017, 68(6): 2315-2320. | |
5 | 阳倦成, 徐鸿鹏, 李凤臣. 黏弹性流体基纳米流体流变学特性[J]. 化工学报, 2014, 65: 199-205. |
Yang J C, Xu H P, Li F C. Rheological properties of vicoelastic fluid based nanofluid[J]. CIESC Journal, 2014, 65: 199-205. | |
6 | 徐俊波, 汪宇莹, 杨超. 纳米受限流体的结构及流体动力学特性[J]. 化工学报, 2016, 67(1): 209-217. |
Xu J B, Wang Y Y, Yang C. Structure and hydrodynamics characteristics of fluids under nano-confinement[J]. CIESC Journal, 2016, 67(1): 209-217. | |
7 | Chen M J, He Y R, Hu Y W, et al. Local heating control of plasmonic nanoparticles for different incident lights and nanoparticles[J]. Plasmonics, 2019, 14(6): 1893-1902. |
8 | 胡彦伟, 程珙, 李浩然, 等. 化学沉淀法制备纳米SiO2颗粒[J]. 化工学报, 2016, 67: 379-383. |
Hu Y W, Cheng G, Li H R, et al. Synthesis of SiO2 nanoparticles by chemical precipitation[J]. CIESC Journal, 2016, 67: 379-383. | |
9 | Bing N C, Yang J, Zhang Y C, et al. 3D graphene nanofluids with high photothermal conversion and thermal transportation properties[J]. Sustainable Energy & Fuels, 2020, 4(3): 1208-1215. |
10 | 崔腾飞, 宣益民, 李强. 基于格子Boltzmann方法模拟纳米流体强化传质过程[J]. 化工学报, 2012, 63: 41-46. |
Cui T F, Xuan Y M, Li Q. Simulation of enhancement of mass transfer in nano-fluids by lattice Boltzmann method[J]. CIESC Journal, 2012, 63: 41-46. | |
11 | 李强, 宣益民. 纳米流体热导率的测量[J]. 化工学报, 2003, 54(1): 42-46. |
Li Q, Xuan Y M. Measurement of thermal conductivities of nanofluids[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 42-46. | |
12 | Li H R, Wang L, He Y R, et al. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids[J]. Applied Thermal Engineering, 2015, 88: 363-368. |
13 | Esfe M H, Afrand M. Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 120766. |
14 | 凌智勇, 邹涛, 丁建宁, 等. 纳米流体黏度特性[J]. 化工学报, 2012, 63(5): 1409-1414. |
Ling Z Y, Zou T, Ding J N, et al. Shear viscosity of nanofluids mixture[J]. CIESC Journal, 2012, 63(5): 1409-1414. | |
15 | 彭小飞, 俞小莉, 夏立峰, 等. 纳米流体有效热导率预测[J]. 化工学报, 2007, 58(2): 299-303. |
Peng X F, Yu X L, Xia L F, et al. Prediction of effective thermal conductivity of nanofluids[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 299-303. | |
16 | 杨雪飞, 刘振华. 一种由表面改性纳米颗粒制备的新型纳米流体[J]. 化工学报, 2010, 61(11): 2902-2905. |
Yang X F, Liu Z H. A new kind of nanofluid prepared with functionalized nanoparticles[J]. CIESC Journal, 2010, 61(11): 2902-2905. | |
17 | Asadi A, Asadi M, Rezaniakolaei A, et al. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation[J]. International Journal of Heat and Mass Transfer, 2018, 117: 474-486. |
18 | Asadi M, Asadi A, Aberoumand S. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid[J]. International Journal of Refrigeration, 2018, 89: 83-92. |
19 | Asadi A. A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid[J]. Energy Conversion and Management, 2018, 175: 1-10. |
20 | Sajid M U, Ali H M. Thermal conductivity of hybrid nanofluids: a critical review[J]. International Journal of Heat and Mass Transfer, 2018, 126: 211-234. |
21 | Afrand M, Najafabadi K N, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines[J]. Applied Thermal Engineering, 2016, 102: 45-54. |
22 | Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation[J]. Applied Thermal Engineering, 2017, 110: 1111-1119. |
23 | Esfe M H, Esfandeh S, Afrand M, et al. Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications[J]. Applied Thermal Engineering, 2018, 133: 452-463. |
24 | Dehkordi R A, Esfe M H, Afrand M. Effects of functionalized single walled carbon nanotubes on thermal performance of antifreeze: an experimental study on thermal conductivity[J]. Applied Thermal Engineering, 2017, 120: 358-366. |
25 | 崔文政, 沈照杰, 毛东旭, 等. 纳米流体中纳米颗粒微运动的分子动力学模拟[J]. 化工学报, 2017, 68: 48-53. |
Cui W Z, Shen Z J, Mao D X, et al. Micro-movements of nanoparticles in nanofluids: molecular dynamics simulation[J]. CIESC Journal, 2017, 68: 48-53. | |
26 | Qi C, Fan F, Pan Y H, et al. Effects of turbulator with round hole on the thermo-hydraulic performance of nanofluids in a triangle tube[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118897. |
27 | Sun B, Guo Y J, Yang D, et al. The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes[J]. Applied Thermal Engineering, 2020, 171: 114920. |
28 | Sun B, Liu H F. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator[J]. Applied Thermal Engineering, 2017, 115: 435-443. |
29 | 姚寿广, 程清芳, 王公利, 等. 以泡沫金属为吸液芯的纳米流体热管传热性能试验研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(6): 556-560. |
Yao S G, Cheng Q F, Wang G L, et al. Experimental investigation on heat transfer performance of foam metal wick heat pipe[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(6): 556-560. | |
30 | 郭亚丽, 徐鹤函, 沈胜强, 等. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流[J]. 物理学报, 2013, 62(14): 326-331. |
Guo Y L, Xu H H, Shen S Q, et al. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method[J]. Acta Physica Sinica, 2013, 62(14): 326-331. | |
31 | Zhou X M, Li X F, Cheng K Y, et al. Numerical study of heat transfer enhancement of nano liquid-metal fluid forced convection in circular tube[J]. Journal of Heat Transfer, 2018, 140(8): 081901. |
32 | 沙丽丽, 巨永林, 张华. 不同磁场作用下Fe3O4/water纳米流体层流流动对流传热系数的实验研究[J]. 化工学报, 2018, 69(4): 1349-1356. |
Sha L L, Ju Y L, Zhang H. Experimental investigation of convective heat transfer coefficient using Fe3O4/water nanofluids under different magnetic field in laminar flow[J]. CIESC Journal, 2018, 69(4): 1349-1356. | |
33 | Mei S Y, Qi C, Luo T, et al. Effects of magnetic field on thermo-hydraulic performance of Fe3O4-water nanofluids in a corrugated tube[J]. International Journal of Heat and Mass Transfer, 2019, 128: 24-45. |
34 | Dalkılıç A S, Türk O A, Mercan H, et al. An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts[J]. International Communications in Heat and Mass Transfer, 2019, 107: 1-13. |
35 | Selimefendigil F, Öztop H F. MHD Pulsating forced convection of nanofluid over parallel plates with blocks in a channel[J]. International Journal of Mechanical Sciences, 2019, 157/158: 726-740. |
36 | Selimefendigil F, Öztop H F. Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects[J]. International Communications in Heat and Mass Transfer, 2020, 113: 104551. |
37 | Selimefendigil F, Öztop H F. Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 123004. |
38 | Selimefendigil F, Oztop H, Sheremet M, et al. Forced convection of Fe3O4-water nanofluid in a bifurcating channel under the effect of variable magnetic field[J]. Energies, 2019, 12(4): 666. |
39 | Selimefendigil F, Öztop H F, Chamkha A J. Role of magnetic field on forced convection of nanofluid in a branching channel[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 30(4): 1755-1772. |
40 | 夏国栋, 杜墨, 刘冉. 微通道内纳米流体的流动与换热特性[J]. 北京工业大学学报, 2016, 42(3): 454-459, 466. |
Xia G D, Du M, Liu R. Hydraulic and thermal characteristics of nanofluid in microchannel[J]. Journal of Beijing University of Technology, 2016, 42(3): 454-459, 466. | |
41 | Sajid M U, Ali H M, Sufyan A, et al. Experimental investigation of TiO2-water nanofluid flow and heat transfer inside wavy mini-channel heat sinks[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(4): 1279-1294. |
42 | Sarafraz M M, Nikkhah V, Nakhjavani M, et al. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment[J]. Experimental Thermal and Fluid Science, 2018, 91: 509-519. |
43 | Sarafraz M M, Yang B, Pourmehran O, et al. Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel[J]. International Communications in Heat and Mass Transfer, 2019, 107: 24-33. |
44 | Ho C J, Liao J C, Li C H, et al. Experimental study of cooling performance of water-based alumina nanofluid in a minichannel heat sink with MEPCM layer embedded in its ceiling[J]. International Communications in Heat and Mass Transfer, 2019, 103: 1-6. |
45 | 刘冉, 夏国栋, 杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报, 2016, 67(12): 4936-4943. |
Liu R, Xia G D, Du M. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal, 2016, 67(12): 4936-4943. | |
46 | 吴信宇, 吴慧英, 屈健, 等. 纳米流体在芯片微通道中的流动与换热特性[J]. 化工学报, 2008, 59(9): 2181-2187. |
Wu X Y, Wu H Y, Qu J, et al. Flow and heat transfer characteristics of nanofluids in silicon chip microchannels[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(9): 2181-2187. | |
47 | 齐聪. 基于LBM的纳米流体自然对流和沸腾换热特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
Qi C. Investigation into natural convection and boiling heat transfer of nanofluids based on LBM[D]. Harbin: Harbin Institute of Technology, 2013. | |
48 | Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
49 | Brinkman H C. The viscosity of concentrated suspensions and solutions[J]. The Journal of Chemical Physics, 1952, 20(4): 571. |
50 | Kline S, McClintock F. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8. |
51 | 刘纪福, 方彬, 赵玉珍. 顺排翅片管束传热和阻力特性的实验研究[J]. 哈尔滨工业大学学报, 1987, 19(3): 67-76. |
Liu J F, Fang B, Zhao Y Z. Experimental research on heat transfer and pressure drop of air flowing in a sequential finned pipe column[J]. Journal of Harbin Institute of Technology, 1987, 19(3): 67-76. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[11] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[14] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[15] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||