化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2249-2257.DOI: 10.11949/0438-1157.20200935
收稿日期:
2020-07-13
修回日期:
2020-09-04
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
赖艳华
作者简介:
张昊(1993—),男,博士研究生,基金资助:
ZHANG Hao(),DONG Yong,LAI Yanhua(),CUI Lin,YANG Xiao
Received:
2020-07-13
Revised:
2020-09-04
Online:
2021-04-05
Published:
2021-04-05
Contact:
LAI Yanhua
摘要:
为了节省电厂空间,提高设备集成应用,提出了一种溶液除湿与湿电相结合的工艺,使用除湿溶液在阳极板布膜,同时实现除尘与除湿功能。通过湿电平板降膜除湿过程的数值模拟与试验,探究了烟气及溶液参数对水热回收性能的影响。结果显示数学模型能够较好地反映该过程,试验工况下湿电平板降膜最高水、热回收率分别可达37.5%和35%,水蒸气所释放的汽化潜热大部分转移到溶液。除湿过程对于湿电除尘效果几乎没有影响,通过焓湿图分析及可视化比较证明,湿电平板降膜除湿可以实现白烟的削弱甚至完全消除。
中图分类号:
张昊, 董勇, 赖艳华, 崔琳, 杨潇. 用于燃煤烟气除湿消白的湿电平板降膜模拟及试验研究[J]. 化工学报, 2021, 72(4): 2249-2257.
ZHANG Hao, DONG Yong, LAI Yanhua, CUI Lin, YANG Xiao. Simulation and experimental analysis on dehumidification and white smoke removal of coal-fired flue gas in falling-film plate used in WESP[J]. CIESC Journal, 2021, 72(4): 2249-2257.
Shell parameters | Anode plates parameters | Operating parameters | |||
---|---|---|---|---|---|
length/m | 1.5 | length/m | 1 | voltage/kV | 4—6 |
width/m | 3 | width/m | 0.1 | water pressure/MPa | 0.4 |
height/m | 6.8 | height/m | 4 |
表1 湿式静电除尘器结构参数
Table 1 Structural parameters of WESP
Shell parameters | Anode plates parameters | Operating parameters | |||
---|---|---|---|---|---|
length/m | 1.5 | length/m | 1 | voltage/kV | 4—6 |
width/m | 3 | width/m | 0.1 | water pressure/MPa | 0.4 |
height/m | 6.8 | height/m | 4 |
The composition of flue gas | Volume fraction/% | The composition of flue gas | Mass concentration/ (mg/m3) |
---|---|---|---|
O2 | 6 | SO2 | 9.8 |
CO2 | 12.3 | NOx | 15.2 |
H2O | 12.5 | particles | 55 |
表2 湿电平板降膜试验烟气组分(50℃,相对湿度100%)
Table 2 The composition of flue gas in dehumidification system of falling-film plate in WESP (t=50℃, RH=100%)
The composition of flue gas | Volume fraction/% | The composition of flue gas | Mass concentration/ (mg/m3) |
---|---|---|---|
O2 | 6 | SO2 | 9.8 |
CO2 | 12.3 | NOx | 15.2 |
H2O | 12.5 | particles | 55 |
Device | Type | Accuracy | Range |
---|---|---|---|
thermometers | thermocouple K | ±0.1℃ | -40—120℃ |
temperature & humidity ensor | Rotronic HC2A-S | ±0.1℃/±0.8%RH | -50—100℃/0—100% |
densitometer | — | ±0.5 kg/m3 | 1200—1400 kg/m3 |
flue gas flow meter | Testo 425 | ±0.03 m/s | 0—20 m/s |
solution flow meter | LDG-MK | ±0.5% | 0—10 m3/h |
表3 湿电平板降膜试验测量设备
Table 3 Specification of different measuring devices in dehumidification system
Device | Type | Accuracy | Range |
---|---|---|---|
thermometers | thermocouple K | ±0.1℃ | -40—120℃ |
temperature & humidity ensor | Rotronic HC2A-S | ±0.1℃/±0.8%RH | -50—100℃/0—100% |
densitometer | — | ±0.5 kg/m3 | 1200—1400 kg/m3 |
flue gas flow meter | Testo 425 | ±0.03 m/s | 0—20 m/s |
solution flow meter | LDG-MK | ±0.5% | 0—10 m3/h |
No. | Inlet flue gas temperature/℃ | Inlet particles concentration/(mg/m3) | Outlet flue gas temperature/℃ | Outlet particles concentration/(mg/m3) | Particles removal efficiency/% |
---|---|---|---|---|---|
1 | 50.2 | 55 | 42.5 | 4.5 | 91.8 |
2 | 45.2 | 57.5 | 43.5 | 4.8 | 91.6 |
3 | 50.1 | 53.2 | 45.2 | 4.5 | 91.5 |
4 | 40.2 | 55.8 | 40.6 | 4.8 | 91 |
5 | 49.8 | 50.2 | 46.3 | 5 | 90 |
表5 湿电平板降膜除尘效率
Table 5 Dust removal efficiency of falling-film plate dehumidification in WESP
No. | Inlet flue gas temperature/℃ | Inlet particles concentration/(mg/m3) | Outlet flue gas temperature/℃ | Outlet particles concentration/(mg/m3) | Particles removal efficiency/% |
---|---|---|---|---|---|
1 | 50.2 | 55 | 42.5 | 4.5 | 91.8 |
2 | 45.2 | 57.5 | 43.5 | 4.8 | 91.6 |
3 | 50.1 | 53.2 | 45.2 | 4.5 | 91.5 |
4 | 40.2 | 55.8 | 40.6 | 4.8 | 91 |
5 | 49.8 | 50.2 | 46.3 | 5 | 90 |
1 | Maalouf S, Ksayer E B, Clodic D. Investigation of direct contact condensation for wet flue-gas waste heat recovery using organic Rankine cycle[J]. Energy Conversion & Management, 2016, 107: 96-102. |
2 | 田路泞, 韩哲楠, 董勇, 等. 燃煤电厂湿烟气余热及水分回收技术研究[J]. 洁净煤技术, 2017, 23(5): 105-110. |
Tian L N, Han Z N, Dong Y, et al. Review of water recovering technologies from flue gas in coal fired power plant[J]. Clean Coal Technology, 2017, 23(5): 105-110. | |
3 | 陈林, 孙颖颖, 梁江涛, 等. 用于烟气余热回收的塑料翅片管换热器的设计及分析[J]. 化工学报, 2014, 65: 175-179. |
Chen L, Sun Y Y, Liang J T, et al. Design and analysis of plastic fin-tube heat exchanger for flue gas heat recovery[J]. CIESC Journal, 2014, 65: 175-179. | |
4 | 陈林, 孙颖颖, 杜小泽, 等. 回收烟气余热的特种耐腐蚀塑料换热器的性能分析[J]. 中国电机工程学报, 2014, 34(17): 2778-2783. |
Chen L, Sun Y Y, Du X Z, et al. Performance analysis of anti-corrosion heat exchangers made of special plastics for flue gas heat recovery[J]. Proceedings of the CSEE, 2014, 34(17): 2778-2783. | |
5 | Shi X, Che D, Agnew B, et al. An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases[J]. International Journal of Heat & Mass Transfer, 2011, 54(1/2/3): 606-615. |
6 | Terhan M, Comakli K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas[J]. Applied Thermal Engineering, 2016, 100(5): 1007-1015. |
7 | Wang T T, Yue M W, Qi H, et al. Transport membrane condenser for water and heat recovery from gaseous streams: performance evaluation[J]. Journal of Membrane Science, 2015, 484: 10-17. |
8 | 孟庆莹, 曹语, 黄延召, 等. 过程参数对采用多孔陶瓷超滤膜回收烟气中余热和水性能的影响[J]. 化工学报, 2018, 69(6): 2519-2525. |
Meng Q Y, Cao Y, Huang Y Z, et al. Effects of process parameters on water and waste heat recovery from flue gas using ceramic ultrafiltration membranes[J]. CIESC Journal, 2018, 69(6): 2519-2525. | |
9 | 陈海平, 谢天, 杨博然, 等. 火电厂烟气水分及余热陶瓷膜法回收实验[J]. 热力发电, 2018, 47(11): 46-52. |
Chen H P, Xie T, Yang B R, et al. Water and waste heat recovery from flue gas of thermal power plants: using ceramic membrane method[J]. Thermal Power Generation, 2018, 47(11): 46-52. | |
10 | Wang D X, Bao A, Kunc W, et al. Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348. |
11 | Zhao S, Yan S, Wang D K, et al. Simultaneous heat and water recovery from flue gas by membrane condensation: experimental investigation[J]. Applied Thermal Engineering, 2017, 113: 843-850. |
12 | Chen H P, Zhou Y N, Cao S T, et al. Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes[J]. Applied Thermal Engineering, 2017, 110: 686-694. |
13 | Liu X H, Yi X Q, Jiang Y. Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions[J]. Energy Conversion & Management, 2011, 52(1): 180-190. |
14 | Yin Y, Zhang X, Chen Z. Experimental study on dehumidifier and regenerator of liquid desiccant cooling air conditioning system[J]. Building and Environment, 2007, 42(7): 2505-2511. |
15 | 张涛, 刘晓华, 江亿. 空气-水/吸湿溶液热湿传递特性分析(Ⅰ): 可及处理区域[J]. 化工学报, 2011, 62(11): 3001-3008. |
Zhang T, Liu X H, Jiang Y. An analysis for heat and moisture transfer effect in air-water or-hydroscopic solution (Ⅰ): Reachable handling region[J]. CIESC Journal, 2011, 62(11): 3001-3008. | |
16 | 高文忠, 柳建华, 章学来. 太阳能叉流液体除湿空调再生热质传递稳态实验[J]. 化工学报, 2011, 62 (10): 2747-2752. |
Gao W Z, Liu J H, Zhang X L. Heat and mass transfer experiments of regenerator in solar-driven cross-flow liquid desiccant air conditioning[J]. CIESC Journal, 2011, 62 (10): 2747-2752. | |
17 | 张润霞, 王赞社, 孟祥兆, 等. 溶液除湿中基于水蒸气压差的传质系数[J]. 化工学报, 2015, 66(12): 4774-4779. |
Zhang R X, Wang Z S, Meng X Z, et al. Mass transfer coefficient for liquid dehumidification based on vapor pressure difference[J]. CIESC Journal, 2015, 66(12): 4774-4779. | |
18 | Westerlund L, Hermansson R, Fagerström J. Flue gas purification and heat recovery: a biomass fired boiler supplied with an open absorption system[J]. Applied Energy, 2012, 96: 444-450. |
19 | Wang Z, Zhang X, Li Z. Evaluation of a flue gas driven open absorption system for heat and water recovery from fossil fuel boilers[J]. Energy Conversion & Management, 2016, 128: 57-65. |
20 | Wang Z, Zhang X, Han J, et al. Waste heat and water recovery from natural gas boilers: parametric analysis and optimization of a flue-gas-driven open absorption system[J]. Energy Conversion & Management, 2017, 154: 526-537. |
21 | Yang B, Jiang Y, Fu L, et al. Experimental and theoretical investigation of a novel full-open absorption heat pump applied to district heating by recovering waste heat of flue gas[J]. Energy and Buildings, 2018, 173: 45-57. |
22 | Yang B, Jiang Y, Fu L, et al. Conjugate heat and mass transfer study of a new open-cycle absorption heat pump applied to total heat recovery of flue gas[J]. Applied Thermal Engineering, 2018, 138: 888-899. |
23 | 吕扬, 董勇, 田路泞, 等. 燃煤电厂湿烟气的除湿特性[J]. 化工学报, 2017, 68(9): 3558-3564. |
Lyu Y, Dong Y, Tian L N, et al. Dehumidification performance of wet flue gas in coal-fired power plant[J]. CIESC Journal, 2017, 68(9): 3558-3564. | |
24 | 张昊, 申凯, 赖艳华, 等.氯化钙溶液喷雾闪蒸再生特性模拟及试验分析[J].化工学报, 2019, 70(6): 2269-2278. |
Zhang H, Shen K, Lai Y H, et al. Simulation and experimental analysis of spray flash regeneration characteristics of CaCl2 solution[J]. CIESC Journal, 2019, 70(6): 2269-2278. | |
25 | 程胜明, 殷勇高. 一种基于溶液除湿的消除湿烟羽新系统[J]. 东南大学学报(自然科学版), 2020, 50(2): 334-341. |
Cheng S M, Yin Y G. New system for eliminating wet plume based on liquid desiccant dehumidification[J].Journal of Southeast University(Natural Science Edition), 2020, 50(2): 334-341. | |
26 | 赵清华, 田路泞, 陈晓炜, 等.燃煤湿法脱硫烟气白烟的发生机理与控制技术[J].节能技术, 2020, 38(2): 147-150. |
Zhao Q H, Tian L N, Chen X W, et al. Generation and control mechanism of white smoke in coal-fired wet desulfurized flue gas[J]. Energy Conservation Technology, 2020, 38(2): 147-150. | |
27 | 赵磊, 周洪光. 超低排放燃煤火电机组湿式电除尘器细颗粒物脱除分析[J]. 中国电机工程学报, 2016, 36(2): 468-473. |
Zhao L, Zhou H G. Particle removal efficiency analysis of WESP in an ultra low emission coal-fired power plant[J]. Proceedings of the CSEE, 2016, 36(2): 468-473. | |
28 | Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design[J]. International Journal of Thermal Sciences, 2004, 43(4): 367-382. |
29 | 陈莲芳, 徐夕仁, 马春元, 等. 湿式烟气脱硫过程中白烟的产生及防治[J]. 发电设备, 2005, 19(5): 326-328. |
Chen L F, Xu X R, Ma C Y, et al. Formation of white smoke in wet flue gas desulfurization processes and ways of prevention[J]. Power Equipment, 2005, 19(5): 326-328. | |
30 | 姚增权. 湿法脱硫烟气直接排放的环境问题探讨[J]. 电力环境保护, 2003, 19(2): 5-8. |
Yao Z Q. Investigation on environmental problems related to the direct discharge of an unheated moist plume[J]. Electric Power Environmental Protection, 2003, 19(2): 5-8. | |
31 | 曹语, 王乐, 季超, 等. 陶瓷膜冷凝器用于烟气脱白烟过程的中试研究[J]. 化工学报, 2019, 70(6): 2192-2201. |
Cao Y, Wang L, Ji C, et al. Pilot-scale application on dissipation of smoke plume from flue gas using ceramic membrane condensers[J]. CIESC Journal, 2019, 70(6): 2192-2201. | |
32 | 邓骥, 魏芳. 湿法烟气脱硫过程白烟成因及防治措施分析[J]. 石油与天然气化工, 2017, 46(2): 17-21. |
Deng J, Wei F. Analysis on the causes and prevention measures of white mist in wet flue gas desulfurization[J]. Chemical Engineering of Oil & Gas, 2017, 46(2): 17-21. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||