1 |
张亚婷, 张博超, 张建兰, 等. “自下而上”化学合成纳米石墨烯的研究进展[J]. 化工学报, 2020, 71(6): 2628-2642.
|
|
Zhang Y T, Zhang B C, Zhang J L, et al. Research progress in “bottom-up” chemical synthesis of nanographenes[J]. CIESC Journal, 2020, 71(6): 2628-2642.
|
2 |
Wang G, Guo Q, Chen D, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5750-5759.
|
3 |
贺新福, 龙雪颖, 吴红菊, 等. 氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能[J]. 化工学报, 2019, 70(6): 2308-2315.
|
|
He X F, Long X Y, Wu H J, et al. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction[J]. CIESC Journal, 2019, 70(6): 2308-2315.
|
4 |
Yan Y B, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications[J]. Advanced Materials, 2019, 31(21): 1808283.
|
5 |
Liu W W, Zhang M W, Li M, et al. Advanced electrode materials comprising of structure-engineered quantum dots for high-performance asymmol/letric micro-supercapacitors[J]. Advanced Energy Materials, 2020, 10(8): 1903724.
|
6 |
Jin S H, Kim D H, Jun G H, et al. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano, 2013, 7(2): 1239-1245.
|
7 |
Zhang Y T, Li K K, Ren S Z, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu(Ⅱ) detection[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9793-9799.
|
8 |
Pan D Y, Zhang J C, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials, 2010, 22(6): 734-738.
|
9 |
Bhattacharyya S, Ehrat F, Urban P, et al. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots[J]. Nature Communications, 2017, 8(1): 1401.
|
10 |
Kalytchuk S, Poláková K, Wang Y, et al. Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing[J]. ACS Nano, 2017, 11(2): 1432-1442.
|
11 |
Meng W X, Bai X, Wang B Y, et al. Biomass-derived carbon dots and their applications[J]. Energy & Environmental Materials, 2019, 2(3): 172-192.
|
12 |
Liu M L, Chen B B, Li C M, et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications[J]. Green Chemistry, 2019, 21(3): 449-471.
|
13 |
Chung S, Revia R A, Zhang M Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Advanced Materials, 2019: 1904362.
|
14 |
陈云, 王念贵. 大豆蛋白质科学与材料[M]. 北京: 化学工业出版社, 2014: 10.
|
|
Chen Y, Wang N G. Soybean Protein Science and Materials[M]. Beijing: Chemical Industry Press, 2014: 10.
|
15 |
Li Y, Zhao Y, Cheng H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. Journal of the American Chemical Society, 2012, 134(1): 15-18.
|
16 |
Zhu S J, Meng Q N, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 52(14): 3953-3957.
|
17 |
Zhan J, Peng R, Wei S, et al. Ethanol-precipitation-assisted highly efficient synthesis of nitrogen-doped carbon quantum dots from chitosan[J]. ACS Omega, 2019, 4(27): 22574-22580.
|
18 |
王艳洁, 那广水, 王震, 等. 检出限的涵义和计算方法[J]. 化学分析计量, 2012, 21(5): 85-88.
|
|
Wang Y J, Na G S, Wang Z, et al. Connotation and calculation methods of detection limit[J]. Chemical Analysis and Meterage, 2012, 21(5): 85-88.
|
19 |
Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale, 2013, 5(24): 12272-12277.
|
20 |
Ye R Q, Xiang C S, Lin J, et al. Coal as an abundant source of graphene quantum dots[J]. Nature Communications, 2013, 4: 2943.
|
21 |
Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780.
|
22 |
Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. Journal of the American Chemical Society, 2007, 129(4): 744-745.
|
23 |
Biscarat J, Bechelany M, Pochat-Bohatier C, et al. Graphene-like BN/gelatin nanobiocomposites for gas barrier applications[J]. Nanoscale, 2015, 7(2): 613-618.
|
24 |
Wang D, Wang L, Dong X Y, et al. Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection[J]. Carbon, 2012, 50(6): 2147-2154.
|
25 |
Yang Y, Cui J, Zheng M, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48(3): 380-382.
|
26 |
Liang Z C, Zeng L, Cao X D, et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation[J]. J. Mater. Chem. C, 2014, 2(45): 9760-9766.
|
27 |
Zhao S, Lan M, Zhu X, et al. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging[J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17054-17060.
|
28 |
Liu X L, Jiang H, Ye J, et al. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging[J]. Advanced Functional Materials, 2016, 26(47): 8694-8706.
|
29 |
Wang Y F, Dong L H, Xiong R L, et al. Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMOL/LA core–shell nanoparticles[J]. Journal of Materials Chemistry C, 2013, 1(46): 7731.
|
30 |
Wang W L, Wang Z F, Liu J J, et al. One-pot facile synthesis of graphene quantum dots from rice husks for Fe3+ sensing[J]. Industrial & Engineering Chemistry Research, 2018, 57(28): 9144-9150.
|
31 |
Li S, Li Y, Cao J, et al. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+[J]. Analytical Chemistry, 2014, 86(20): 10201-10207.
|
32 |
Ananthanarayanan A, Wang X W, Routh P, et al. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing[J]. Advanced Functional Materials, 2014, 24(20): 3021-3026.
|