化工学报 ›› 2022, Vol. 73 ›› Issue (1): 194-203.DOI: 10.11949/0438-1157.20211029
周培1(),张秀平2,唐景春1(),杨磊1,叶斌1,黄荣华3
收稿日期:
2021-07-23
修回日期:
2021-10-21
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
唐景春
作者简介:
周培(1991—),男,博士,讲师,基金资助:
Pei ZHOU1(),Xiuping ZHANG2,Jingchun TANG1(),Lei YANG1,Bin YE1,Ronghua HUANG3
Received:
2021-07-23
Revised:
2021-10-21
Online:
2022-01-05
Published:
2022-01-18
Contact:
Jingchun TANG
摘要:
研究气泡浮升直径对揭示过冷流动沸腾的传热机理至关重要。为探究流动工况对气泡浮升直径的影响机制,针对发动机缸盖沸腾区域的冷却通道设计了一个水动力相似的矩形实验通道,搭建了过冷流动沸腾可视化实验循环系统。基于该可视化实验系统,研究了系统压力、壁面过热度、流速以及液体过冷度对气泡浮升直径的影响,发现气泡浮升直径随着系统压力、流速以及过冷度的增大而变小,随着壁面过热度的增大而增大。建立了气泡在浮升时刻的力平衡模型,该力平衡模型的预测值与实验值的平均相对误差为12.25%。为了便于工程应用,基于气泡浮升直径的力平衡模型,建立了气泡浮升直径的经验模型,该经验模型的预测值与实验值的平均相对误差为6.80%。
中图分类号:
周培, 张秀平, 唐景春, 杨磊, 叶斌, 黄荣华. 过冷流动沸腾中气泡浮升直径的实验及理论研究[J]. 化工学报, 2022, 73(1): 194-203.
Pei ZHOU, Xiuping ZHANG, Jingchun TANG, Lei YANG, Bin YE, Ronghua HUANG. Experimental and theoretical study on bubble lift-off diameter in subcooled flow boiling[J]. CIESC Journal, 2022, 73(1): 194-203.
直接测量参数 | 间接测量参数 | |||||
---|---|---|---|---|---|---|
系统压力 | 热电偶位置 | 热电偶温度 | 流速 | 壁面热流 | 壁面温度 | |
0.5 kPa | 0.05 mm | 0.5 K | 0.08 m/s | 17 kW/m2 | 0.7 K |
表1 间接测量参数与直接测量参数的误差
Table 1 Measured and calculated parameters and their uncertainties
直接测量参数 | 间接测量参数 | |||||
---|---|---|---|---|---|---|
系统压力 | 热电偶位置 | 热电偶温度 | 流速 | 壁面热流 | 壁面温度 | |
0.5 kPa | 0.05 mm | 0.5 K | 0.08 m/s | 17 kW/m2 | 0.7 K |
方向 | 力模型 |
---|---|
x方向 | |
y方向 | |
表2 气泡受力模型[3]
Table 2 Various forces for force balance model[3]
方向 | 力模型 |
---|---|
x方向 | |
y方向 | |
模型 | 方程 |
---|---|
Zeng模型[ | |
本文采用的模型[ |
表3 气泡生长模型
Table 3 Models of bubble growth rate
模型 | 方程 |
---|---|
Zeng模型[ | |
本文采用的模型[ |
方向 | |||||
---|---|---|---|---|---|
水平 | 899~1583 | 0.014~0.026 | 0.009~0.029 | 1.54~1.89 | 7858~15743 |
表4 本文气泡浮升直径经验模型适用范围
Table 4 Range of parameters for the new bubble lift-off diameter model
方向 | |||||
---|---|---|---|---|---|
水平 | 899~1583 | 0.014~0.026 | 0.009~0.029 | 1.54~1.89 | 7858~15743 |
1 | 董非, 苑天林, 武志伟, 等. 基于RPI模型的内燃机冷却水腔内数值模拟研究[J]. 化工学报, 2019, 70: 250-257. |
Dong F, Yuan T L, Wu Z W, et al. Numerical study of engine water jackets using RPI model[J]. CIESC Journal, 2019, 70: 250-257. | |
2 | 凌家驹, 向建华, 张小良. 强化缸盖鼻梁区传热的水腔表面结构设计研究[J]. 内燃机学报, 2019, 37(5): 454-461. |
Ling J J, Xiang J H, Zhang X L. Surface structure design of water cavity for enhancing heat transfer in bridge zone of cylinder head[J]. Transactions of CSICE, 2019, 37(5): 454-461. | |
3 | Zhou P, Huang R H, Huang S, et al. Experimental investigation on bubble contact diameter and bubble departure diameter in horizontal subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119105. |
4 | Mohanty R L, Das M K. A critical review on bubble dynamics parameters influencing boiling heat transfer[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 466-494. |
5 | Basu N, Warrier G R, Dhir V K. Wall heat flux partitioning during subcooled flow boiling(1): Model development[J]. Journal of Heat Transfer, 2005, 127(2): 131-140. |
6 | Gilman L, Baglietto E. A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics[J]. International Journal of Multiphase Flow, 2017, 95: 35-53. |
7 | Prodanovic V, Fraser D, Salcudean M. Bubble behavior in subcooled flow boiling of water at low pressures and low flow rates[J]. International Journal of Multiphase Flow, 2002, 28(1): 1-19. |
8 | Tolubinsky V I, Kostanchuk D M. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling[C]//Proceeding of International Heat Transfer Conference. Paris-Versailles, France, 1970: 1-11. |
9 | Situ R, Hibiki T, Ishii M, et al. Bubble lift-off size in forced convective subcooled boiling flow[J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5536-5548. |
10 | Brooks C S, Hibiki T. Wall nucleation modeling in subcooled boiling flow[J]. International Journal of Heat and Mass Transfer, 2015, 86: 183-196. |
11 | Du J Y, Zhao C R, Bo H L. Investigation of bubble departure diameter in horizontal and vertical subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2018, 127: 796-805. |
12 | Han C Y, Griffith P. The mechanism of heat transfer in nucleate pool boiling(I): Bubble initiaton, growth and departure[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 887-904. |
13 | Ünal H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2[J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. |
14 | 潘丰, 王超杰, 母立众, 等. 池沸腾孤立气泡生长过程中微液层蒸发影响的实验和模拟耦合分析[J]. 化工学报, 2021, 72(5): 2514-2527. |
Pan F, Wang C J, Mu L Z, et al. Analysis of the influence of microlayer evaporation on single-bubble pool boiling by coupling the experimental observations and numerical simulations[J]. CIESC Journal, 2021, 72(5): 2514-2527. | |
15 | Morel C, Mimouni s, Lavi'eville J M, et al. R1I3 boiling bubbly flow in an annular geometry simulated with the NEPTUNE code[C]// Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. Avignon, France, 2005: 36-45. |
16 | Dong X M, Zhang Z J. Mechanism study of bubble maximum diameter in the subcooled boiling flow for low-pressure condition[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120585. |
17 | Klausner J F, Mei R, Bernhard D M, et al. Vapor bubble departure in forced convection boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(3): 651-662. |
18 | Zeng L Z, Klausner J F, Bernhard D M, et al. A unified model for the prediction of bubble detachment diameters in boiling systems(II): Flow boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(9): 2271-2279. |
19 | Abdous M A, Holagh S G, Shamsaiee M, et al. The prediction of bubble departure and lift-off radii in vertical U-shaped channel under subcooled flow boiling based on forces balance analysis[J]. International Journal of Thermal Sciences, 2019, 142: 316-331. |
20 | Chen D Q, Pan L M, Ren S. Prediction of bubble detachment diameter in flow boiling based on force analysis[J]. Nuclear Engineering and Design, 2012, 243: 263-271. |
21 | Colombo M, Fairweather M. Prediction of bubble departure in forced convection boiling: a mechanistic model[J]. International Journal of Heat and Mass Transfer, 2015, 85: 135-146. |
22 | Raj S, Pathak M, Khan M K. An analytical model for predicting growth rate and departure diameter of a bubble in subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2017, 109: 470-481. |
23 | Sugrue R, Buongiorno J. A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling[J]. Nuclear Engineering and Design, 2016, 305: 717-722. |
24 | Thorncroft G E, Klausner J F. Bubble forces and detachment models[J]. Multiphase Science and Technology, 2001, 13(3/4): 42. |
25 | Yeoh G H, Tu J Y. A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow[J]. Nuclear Engineering and Design, 2005, 235(10/11/12): 1251-1265. |
26 | Gao W Z, Qi J Y, Yang X, et al. Experimental investigation on bubble departure diameter in pool boiling under sub-atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2019, 134: 933-947. |
27 | Wang X L, Wu Z, Wei J J, et al. Correlations for prediction of the bubble departure radius on smooth flat surface during nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 699-714. |
28 | Hua S Y, Huang R H, Zhou P. Numerical investigation of two-phase flow characteristics of subcooled boiling in IC engine cooling passages using a new 3D two-fluid model[J]. Applied Thermal Engineering, 2015, 90: 648-663. |
29 | 李智, 黄荣华, 王兆文, 等. 基于多场耦合的重载柴油机气缸盖优化设计[J]. 华中科技大学学报(自然科学版), 2011, 39(8): 10-13. |
Li Z, Huang R H, Wang Z W, et al. Optimization design of the cylinder head in heavy duty diesel engines based on multi-field coupled method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(8): 10-13. | |
30 | Sugrue R, Buongiorno J, McKrell T. An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure[J]. Nuclear Engineering and Design, 2014, 279: 182-188. |
31 | Liu X, Cao Y F, Zhang T E. Experimental study on boiling heat transfer in cylinder head jacket[J]. Advanced Materials Research, 2012, 433/434/435/436/437/438/439/440: 18-23. |
32 | 董非, 张朝烛, 龚伟, 等. 缸盖鼻梁区水腔内沸腾气泡演化行为试验[J]. 内燃机学报, 2018, 36(3): 252-257. |
Dong F, Zhang C Z, Gong W, et al. Experiment on evolution behaviors of boiling bubbles in water jacket in bridge zone of cylinder head[J]. Transactions of CSICE, 2018, 36(3): 252-257. | |
33 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[4] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[7] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[9] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[14] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[15] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||