化工学报 ›› 2022, Vol. 73 ›› Issue (1): 308-321.DOI: 10.11949/0438-1157.20211103
张超1(),陈健2,殷文华2,沈圆辉1,钮朝阳1,余秀鑫1,张东辉1(),唐忠利1
收稿日期:
2021-08-09
修回日期:
2021-11-23
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
张东辉
作者简介:
张超(1998—),男,硕士研究生,基金资助:
Chao ZHANG1(),Jian CHEN2,Wenhua YIN2,Yuanhui SHEN1,Zhaoyang NIU1,Xiuxin YU1,Donghui ZHANG1(),Zhongli TANG1
Received:
2021-08-09
Revised:
2021-11-23
Online:
2022-01-05
Published:
2022-01-18
Contact:
Donghui ZHANG
摘要:
变压吸附技术是工业上生产高纯氢气最常用的方法之一。然而,在实际生产过程中无法观察到塔内各组分在不同时刻的分布状态,因此借助模拟的手段来研究从投料至系统达到循环稳态期间各组分在塔内的动态变化规律,进而指导工艺改进是很有必要的。采用活性炭和5A分子筛为吸附剂,设计了八塔变压吸附工艺从蒸汽甲烷重整气中纯化氢气,模拟了变压吸附制氢开车过程,分析了开车过程中塔内各组分在吸附、顺放以及冲洗三个阶段以及循环稳态后吸附阶段瞬态吸附行为和塔内温度变化。结果表明,在吸附以及顺放等过程中重组分会随着循环周期向塔顶移动。这一现象是组分间竞争吸附和冲洗再生方式下重组分在床层底部累积两个作用因素共同导致的。这些因素在一定程度上也会造成CO的吸附前沿在吸附阶段就过多进入5A分子筛上,使得CO含量成为限制工艺性能的主要因素。
中图分类号:
张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
Chao ZHANG, Jian CHEN, Wenhua YIN, Yuanhui SHEN, Zhaoyang NIU, Xiuxin YU, Donghui ZHANG, Zhongli TANG. Transient analysis of pressure swing adsorption hydrogen purification process[J]. CIESC Journal, 2022, 73(1): 308-321.
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 | 塔7 | 塔8 |
---|---|---|---|---|---|---|---|---|
40 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 |
40 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 |
40 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 |
40 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 |
40 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 |
40 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 |
40 | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD |
40 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 |
40 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 |
40 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 |
40 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 |
40 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 |
40 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 |
40 | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR |
40 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 |
40 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 |
表1 八塔PSA时序
Table 1 The schedule of eight-bed PSA
时间/s | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 | 塔7 | 塔8 |
---|---|---|---|---|---|---|---|---|
40 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 |
40 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 |
40 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 | ED3 |
40 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 | ED4 |
40 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD | PP1 |
40 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 | PP2 |
40 | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 | BD |
40 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 | RP2 |
40 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 | RP1 |
40 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 | ER4 |
40 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 | ER3 |
40 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR | ER2 |
40 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 | ER1 |
40 | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 | PR |
40 | ER1 | ER3 | RP1 | BD | PP1 | ED3 | ED1 | AD1 |
40 | PR | ER2 | ER4 | RP2 | PP2 | ED4 | ED2 | AD2 |
数学模型 | ||
---|---|---|
质量守恒 | (1) | |
(2) | ||
(3) | ||
能量守恒 | (4) | |
(5) | ||
(6) | ||
Ergun方程 | (7) | |
LDF方程 | (8) | |
吸附等温式 | (9) |
表2 吸附塔数学模型
Table 2 Mathematical model of adsorption bed
数学模型 | ||
---|---|---|
质量守恒 | (1) | |
(2) | ||
(3) | ||
能量守恒 | (4) | |
(5) | ||
(6) | ||
Ergun方程 | (7) | |
LDF方程 | (8) | |
吸附等温式 | (9) |
指标 | 数学模型 | |
---|---|---|
纯度 | (10) | |
回收率 | recovery | (11) |
生产量 | (12) |
表3 工艺性能评价指标
Table 3 Process performance indicator
指标 | 数学模型 | |
---|---|---|
纯度 | (10) | |
回收率 | recovery | (11) |
生产量 | (12) |
物性参数 | 活性炭 | 5A分子筛 |
---|---|---|
ρb /(kg·m-3) | 522.0 | 698.0 |
Cps/(kJ·kg-1·K-1) | 1.047 | 0.92 |
rp/m | 0.00115 | 0.00157 |
εb | 0.433 | 0.357 |
εp | 0.61 | 0.65 |
0.9 | 1.0 | |
kLDF,CH4/s-1 | 0.195 | 0.147 |
kLDF,CO/s-1 | 0.15 | 0.063 |
kLDF,CO2/s-1 | 0.0355 | 0.0135 |
kLDF,H2/s-1 | 0.7 | 0.7 |
kLDF,N2/s-1 | 3.0 | 2.5 |
表4 活性炭和5A分子筛吸附剂参数
Table 4 Parameters of activated carbon and 5A zeolite adsorbent
物性参数 | 活性炭 | 5A分子筛 |
---|---|---|
ρb /(kg·m-3) | 522.0 | 698.0 |
Cps/(kJ·kg-1·K-1) | 1.047 | 0.92 |
rp/m | 0.00115 | 0.00157 |
εb | 0.433 | 0.357 |
εp | 0.61 | 0.65 |
0.9 | 1.0 | |
kLDF,CH4/s-1 | 0.195 | 0.147 |
kLDF,CO/s-1 | 0.15 | 0.063 |
kLDF,CO2/s-1 | 0.0355 | 0.0135 |
kLDF,H2/s-1 | 0.7 | 0.7 |
kLDF,N2/s-1 | 3.0 | 2.5 |
参数 | 数值 |
---|---|
Hb/m | 1.0 |
Wt/m | 0.002 |
Db/m | 0.2 |
7800 | |
Cpw/(kJ·kg-1·K-1) | 0.5024 |
hw/(W·m-2·K-1) | 94.0 |
Tamb/K | 298.15 |
表5 吸附床参数
Table 5 Parameters of adsorption bed
参数 | 数值 |
---|---|
Hb/m | 1.0 |
Wt/m | 0.002 |
Db/m | 0.2 |
7800 | |
Cpw/(kJ·kg-1·K-1) | 0.5024 |
hw/(W·m-2·K-1) | 94.0 |
Tamb/K | 298.15 |
组分 | T/K | 活性炭 | 5A 分子筛 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | |||
H2 | 298.15 | 3.85 | 5.48×10-5 | 0.9996 | -12.84 | 0.76 | 7.70×10-4 | 0.9995 | -9.23 | |
308.15 | 4.32 | 5.12×10-5 | 0.9997 | 0.67 | 8.57×10-4 | 0.9996 | ||||
318.15 | 2.21 | 1.06×10-4 | 0.9994 | 0.65 | 8.47×10-4 | 0.9997 | ||||
CO | 298.15 | 6.72 | 9.10×10-6 | 0.9998 | -22.58 | 2.24 | 6.14×10-6 | 0.9991 | -29.77 | |
308.15 | 6.22 | 9.13×10-6 | 0.9998 | 2.20 | 6.58×10-6 | 0.9993 | ||||
318.15 | 5.50 | 9.68×10-6 | 0.9997 | 2.27 | 6.14×10-6 | 0.9997 | ||||
CO2 | 298.15 | 7.96 | 2.52×10-6 | 1.0000 | -29.08 | 4.35 | 7.60×10-6 | 0.9990 | -35.97 | |
308.15 | 7.32 | 3.20×10-6 | 0.9998 | 4.14 | 9.74×10-6 | 0.9982 | ||||
318.15 | 6.59 | 4.17×10-6 | 1.0000 | 3.96 | 9.12×10-6 | 0.9956 | ||||
CH4 | 298.15 | 7.21 | 1.73×10-5 | 0.9999 | -22.70 | 3.73 | 5.91×10-5 | 0.9996 | -20.64 | |
308.15 | 6.75 | 1.98×10-5 | 0.9998 | 3.54 | 5.37×10-5 | 1.0000 | ||||
318.15 | 6.14 | 2.38×10-5 | 0.9998 | 3.63 | 5.12×10-5 | 1.0000 | ||||
N2 | 298.15 | 3.48 | 1.87×10-4 | 1.0000 | -15.99 | 2.75 | 3.98×10-5 | 0.9999 | -20.65 | |
308.15 | 3.38 | 1.94×10-4 | 0.9997 | 2.67 | 4.16×10-5 | 0.9997 | ||||
318.15 | 3.30 | 2.01×10-4 | 0.9998 | 2.59 | 4.33×10-5 | 1.0000 |
表6 扩展型Langmuir吸附模型拟合参数
Table 6 Extended Langmuir adsorption model fitting parameters
组分 | T/K | 活性炭 | 5A 分子筛 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | qm/(mmol·g-1) | b0/bar-1 | R | ΔH/(kJ·mol-1) | |||
H2 | 298.15 | 3.85 | 5.48×10-5 | 0.9996 | -12.84 | 0.76 | 7.70×10-4 | 0.9995 | -9.23 | |
308.15 | 4.32 | 5.12×10-5 | 0.9997 | 0.67 | 8.57×10-4 | 0.9996 | ||||
318.15 | 2.21 | 1.06×10-4 | 0.9994 | 0.65 | 8.47×10-4 | 0.9997 | ||||
CO | 298.15 | 6.72 | 9.10×10-6 | 0.9998 | -22.58 | 2.24 | 6.14×10-6 | 0.9991 | -29.77 | |
308.15 | 6.22 | 9.13×10-6 | 0.9998 | 2.20 | 6.58×10-6 | 0.9993 | ||||
318.15 | 5.50 | 9.68×10-6 | 0.9997 | 2.27 | 6.14×10-6 | 0.9997 | ||||
CO2 | 298.15 | 7.96 | 2.52×10-6 | 1.0000 | -29.08 | 4.35 | 7.60×10-6 | 0.9990 | -35.97 | |
308.15 | 7.32 | 3.20×10-6 | 0.9998 | 4.14 | 9.74×10-6 | 0.9982 | ||||
318.15 | 6.59 | 4.17×10-6 | 1.0000 | 3.96 | 9.12×10-6 | 0.9956 | ||||
CH4 | 298.15 | 7.21 | 1.73×10-5 | 0.9999 | -22.70 | 3.73 | 5.91×10-5 | 0.9996 | -20.64 | |
308.15 | 6.75 | 1.98×10-5 | 0.9998 | 3.54 | 5.37×10-5 | 1.0000 | ||||
318.15 | 6.14 | 2.38×10-5 | 0.9998 | 3.63 | 5.12×10-5 | 1.0000 | ||||
N2 | 298.15 | 3.48 | 1.87×10-4 | 1.0000 | -15.99 | 2.75 | 3.98×10-5 | 0.9999 | -20.65 | |
308.15 | 3.38 | 1.94×10-4 | 0.9997 | 2.67 | 4.16×10-5 | 0.9997 | ||||
318.15 | 3.30 | 2.01×10-4 | 0.9998 | 2.59 | 4.33×10-5 | 1.0000 |
Initial conditions |
---|
表7 吸附床初始条件
Table 7 Initial conditions of adsorption bed
Initial conditions |
---|
Step | z=0 | z=L |
---|---|---|
吸附 (AD1, AD2) | ||
均压降 (ED1, ED2, ED3, ED4) | ||
顺放 (PP1, PP2) | ||
表8 PSA过程中各步的边界条件
Table 8 The boundary conditions for each step of PSA process
Step | z=0 | z=L |
---|---|---|
吸附 (AD1, AD2) | ||
均压降 (ED1, ED2, ED3, ED4) | ||
顺放 (PP1, PP2) | ||
图10 循环稳态时吸附塔内气相温度轴向分布和压力分布以及塔底解吸气分布
Fig.10 Temperature distribution, pressure profile within adsorption bed, and desorption gas distribution at the bottom of the bed at cycle steady state
1 | Momirlan M, Veziroglu T N. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet[J]. International Journal of Hydrogen Energy, 2005, 30(7): 795-802. |
2 | Yang S I, Choi D Y, Jang S C, et al. Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas[J]. Adsorption, 2008, 14(4/5): 583-590. |
3 | Delgado J A, Águeda V I, Uguina M A, et al. Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15414-15426. |
4 | Zhu X C, Shi Y X, Li S, et al. Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production[J]. Applied Energy, 2018, 229: 1061-1071. |
5 | Ritter J A, Ebner A D. State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries[J]. Separation Science and Technology, 2007, 42(6): 1123-1193. |
6 | Sircar S, Kratz W C. Simultaneous production of hydrogen and carbon dioxide from steam reformer off-gas by pressure swing adsorption[J]. Separation Science and Technology, 1988, 23(14/15): 2397-2415. |
7 | Sircar S, Golden T C. Purification of hydrogen by pressure swing adsorption[J]. Separation Science and Technology, 2000, 35(5): 667-687. |
8 | Brea P, Delgado J A, Águeda V I, et al. Modeling of breakthrough curves of N2, CH4, CO, CO2 and a SMR type off-gas mixture on a fixed bed of BPL activated carbon[J]. Separation and Purification Technology, 2017, 179: 61-71. |
9 | Ribeiro A M, Grande C A, Lopes F V S, et al. Four beds pressure swing adsorption for hydrogen purification: case of humid feed and activated carbon beds[J]. AIChE Journal, 2009, 55(9): 2292-2302. |
10 | Ahn S, You Y W, Lee D G, et al. Layered two- and four-bed PSA processes for H2 recovery from coal gas[J]. Chemical Engineering Science, 2012, 68(1): 413-423. |
11 | Luberti M, Friedrich D, Brandani S, et al. Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture[J]. Adsorption, 2014, 20(2/3): 511-524. |
12 | Moon D K, Lee D G, Lee C H. H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process[J]. Applied Energy, 2016, 183: 760-774. |
13 | Golmakani A, Fatemi S, Tamnanloo J. Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification[J]. Separation and Purification Technology, 2017, 176: 73-91. |
14 | Moon D K, Park Y, Oh H T, et al. Performance analysis of an eight-layered bed PSA process for H2 recovery from IGCC with pre-combustion carbon capture[J]. Energy Conversion and Management, 2018, 156: 202-214. |
15 | Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
16 | Park Y, Kang J H, Moon D K, et al. Parallel and series multi-bed pressure swing adsorption processes for H2 recovery from a lean hydrogen mixture[J]. Chemical Engineering Journal, 2021, 408: 127299. |
17 | Divekar S, Arya A, Hanif A, et al. Recovery of hydrogen and carbon dioxide from hydrogen PSA tail gas by vacuum swing adsorption[J]. Separation and Purification Technology, 2021, 254: 117113. |
18 | Majlan E H, Daud W R W, Iyuke S E, et al. Hydrogen purification using compact pressure swing adsorption system for fuel cell[J]. International Journal of Hydrogen Energy, 2009, 34(6): 2771-2777. |
19 | Lopes F V S, Grande C A, Rodrigues A E. Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance[J]. Chemical Engineering Science, 2011, 66(3): 303-317. |
20 | Abdeljaoued A, Relvas F, Mendes A, et al. Simulation and experimental results of a PSA process for production of hydrogen used in fuel cells[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 338-355. |
21 | Zhang N N, Xiao J S, Bénard P, et al. Single-and double-bed pressure swing adsorption processes for H2/CO syngas separation[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26405-26418. |
22 | Li H R, Liao Z W, Sun J Y, et al. Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1870-1878. |
23 | Yáñez M, Relvas F, Ortiz A, et al. PSA purification of waste hydrogen from ammonia plants to fuel cell grade[J]. Separation and Purification Technology, 2020, 240: 116334. |
24 | You Y W, Lee D G, Yoon K Y, et al. H2 PSA purifier for CO removal from hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18175-18186. |
25 | Golmakani A, Nabavi S A, Manović V. Effect of impurities on ultra-pure hydrogen production by pressure vacuum swing adsorption[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 278-289. |
26 | Liu Z, Grande C A, Li P, et al. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas[J]. Separation and Purification Technology, 2011, 81(3): 307-317. |
27 | Yang H W, Yin C B, Jiang B, et al. Optimization and analysis of a VPSA process for N2/CH4 separation[J]. Separation and Purification Technology, 2014, 134: 232-240. |
28 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501. |
29 | Tang X, Wang Z F, Ripepi N, et al. Adsorption affinity of different types of coal: mean isosteric heat of adsorption[J]. Energy & Fuels, 2015, 29(6): 3609-3615. |
30 | Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[14] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||