化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4366-4376.DOI: 10.11949/0438-1157.20220670
收稿日期:
2022-05-10
修回日期:
2022-06-30
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
刘淑丽
作者简介:
沈永亮(1996—),男,博士研究生,shenyl0104@163.com
基金资助:
Yongliang SHEN(), Pengwei ZHANG, Shuli LIU()
Received:
2022-05-10
Revised:
2022-06-30
Online:
2022-10-05
Published:
2022-11-02
Contact:
Shuli LIU
摘要:
针对于相变材料(PCM)导热性能差引起的梯级相变储热系统传热速率低的问题,利用三维数值仿真研究肋片和多孔介质对梯级相变储能系统放热性能的强化作用,在此基础上提出了梯度孔隙率进一步提升系统的放热性能,从PCM的放热速率和放热效率两个方面对梯级相变储能系统的不同强化方法进行了分析对比。结果表明肋片在显热放热阶段强化传热作用更显著,而多孔介质在潜热放热阶段强化传热更显著。整个放热过程只加入多孔介质比只加入肋片表现出更好的放热性能。同时添加肋片和多孔介质时,梯级相变系统放热性能最优,PCM完全凝固时间减少了40%。三种孔隙率梯度工况下,系统的放热效率无明显差异,但在负梯度孔隙率情况下,放热速率更高且更均匀。相比于正梯度孔隙率的情况,负梯度孔隙率具有更优的热性能。
中图分类号:
沈永亮, 张朋威, 刘淑丽. 肋片和多孔介质强化梯级相变储热系统性能的对比研究[J]. 化工学报, 2022, 73(10): 4366-4376.
Yongliang SHEN, Pengwei ZHANG, Shuli LIU. Comparative study on the performance of cascaded latent heat storage system enhanced by fins and porous media[J]. CIESC Journal, 2022, 73(10): 4366-4376.
参数 | 硬脂酸(PCM1) | 石蜡(PCM2) | 月桂酸(PCM3) | 多孔介质 |
---|---|---|---|---|
密度/(kg/m2) | 941 (s) 848 (l)[ | 810 (s) 771 (l)[ | 1007 (s) 870 (l) [ | 800 |
比热容/(J/(kg·K)) | 2380[ | 2100[ | 2117[ | 2100 |
热导率/(W/(m·K)) | 0.172[ | 0.2[ | 0.192[ | 2.0 |
黏度/(Pa·s) | 3.4×10-3[ | 4.05×10-3 [ | 5.336×10-3[ | — |
膨胀系数/K-1 | 4.0×10-5 | 5.0×10-5 | 4.5×10-5 | — |
潜热/(J/kg) | 227160 | 182240 | 187740 | — |
固相线温度/K | 340.66 | 330.83 | 316.65 | — |
熔化温度/K | 343.77 | 333.85 | 321.35 | — |
表1 相变材料与多孔介质的物性参数
Table 1 Physical parameters of PCMs and porous media
参数 | 硬脂酸(PCM1) | 石蜡(PCM2) | 月桂酸(PCM3) | 多孔介质 |
---|---|---|---|---|
密度/(kg/m2) | 941 (s) 848 (l)[ | 810 (s) 771 (l)[ | 1007 (s) 870 (l) [ | 800 |
比热容/(J/(kg·K)) | 2380[ | 2100[ | 2117[ | 2100 |
热导率/(W/(m·K)) | 0.172[ | 0.2[ | 0.192[ | 2.0 |
黏度/(Pa·s) | 3.4×10-3[ | 4.05×10-3 [ | 5.336×10-3[ | — |
膨胀系数/K-1 | 4.0×10-5 | 5.0×10-5 | 4.5×10-5 | — |
潜热/(J/kg) | 227160 | 182240 | 187740 | — |
固相线温度/K | 340.66 | 330.83 | 316.65 | — |
熔化温度/K | 343.77 | 333.85 | 321.35 | — |
几何参数 | 数值 |
---|---|
相变换热系统储热器总高度 | 1200 mm |
PCM腔体高度 | 900 mm |
PCM填充高度 | 810 mm |
密封盖高度 | 100 mm |
外管内径 | 200 mm |
中管内径 | 140 mm |
内管内径 | 60 mm |
外管、中管和内管的厚度 | 3 mm |
直型肋片厚度×长度×高度 | 2 mm×30 mm×900 mm |
储热器之间距离 | 600 mm |
储热器之间的管道长度 | 2540 mm |
传热流体管道直径 | 116 mm |
表2 相变储热器物理模型的具体几何尺寸参数
Table 2 The specific geometric parameters of the physical model of the latent heat storage unit
几何参数 | 数值 |
---|---|
相变换热系统储热器总高度 | 1200 mm |
PCM腔体高度 | 900 mm |
PCM填充高度 | 810 mm |
密封盖高度 | 100 mm |
外管内径 | 200 mm |
中管内径 | 140 mm |
内管内径 | 60 mm |
外管、中管和内管的厚度 | 3 mm |
直型肋片厚度×长度×高度 | 2 mm×30 mm×900 mm |
储热器之间距离 | 600 mm |
储热器之间的管道长度 | 2540 mm |
传热流体管道直径 | 116 mm |
孔隙率分布 | PCM1 | PCM2 | PCM3 |
---|---|---|---|
正孔隙率梯度 | 0.85 | 0.90 | 0.95 |
均匀孔隙率梯度 | 0.90 | 0.90 | 0.90 |
负孔隙率梯度 | 0.95 | 0.90 | 0.85 |
表3 三种孔隙率梯度分布情况
Table 3 Three cases of gradient porosity of PCMs
孔隙率分布 | PCM1 | PCM2 | PCM3 |
---|---|---|---|
正孔隙率梯度 | 0.85 | 0.90 | 0.95 |
均匀孔隙率梯度 | 0.90 | 0.90 | 0.90 |
负孔隙率梯度 | 0.95 | 0.90 | 0.85 |
1 | Sarı A. Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications[J]. Energy Conversion and Management, 2003, 44(14): 2277-2287. |
2 | Nomura T, Okinaka N, Akiyama T. Technology of latent heat storage for high temperature application: a review[J]. ISIJ International, 2010, 50(9): 1229-1239. |
3 | 李京卫, 唐志伟, 王昊. 低温相变蓄热材料性能研究及在移动蓄热装置中应用[J]. 化工进展, 2021, 40(S1): 163-167. |
Li J W, Tang Z W, Wang H. Properties of low temperature phase change heat storage materials and their applications in mobile heat storage devices[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 163-167. | |
4 | Mahian O, Ghafarian S, Sarrafha H, et al. Phase change materials in solar photovoltaics applied in buildings: an overview[J]. Solar Energy, 2021, 224: 569-592. |
5 | 张晨宇, 王宁, 徐洪涛, 等. 基于相变材料的太阳能PV/T系统性能[J]. 化工学报, 2020, 71(S1): 361-367. |
Zhang C Y, Wang N, Xu H T, et al. Photovoltaic and thermal performance of solar PV/T system with phase change material[J]. CIESC Journal, 2020, 71(S1): 361-367. | |
6 | 林浩楠. 相变储热材料的研究进展[J]. 冶金与材料, 2021, 41(6): 41-42. |
Lin H N. Research progress of phase change materials[J]. Metallurgy and Materials, 2021, 41(6): 41-42. | |
7 | Jebasingh E, Arasu A. A comprehensive review on nanoparticles dispersed PCM, latent heat of nanoparticles dispersed PCM and thermal conductivity of nanoparticles dispersed PCM[J]. Energy Storage Materials, 2019, 24: 52-74. |
8 | Liu H Q, Ahmad S, Shi Y, et al. A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling[J]. Energy, 2021, 231: 120869. |
9 | Farid M M, Kanzawa A. Thermal performance of a heat storage module using with different melting temperatures: mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111(2): 152-157. |
10 | Rudra M B V, Nidhul K, Gumtapure V. Performance evaluation of novel tapered shell and tube cascaded latent heat thermal energy storage[J]. Solar Energy, 2021, 214: 377-392. |
11 | Elsanusi O S, Nsofor E C. Melting of multiple PCMs with different arrangements inside a heat exchanger for energy storage[J]. Applied Thermal Engineering, 2021, 185: 116046. |
12 | Xu H J, Zhao C Y. Thermal performance of cascaded thermal storage with phase-change materials (PCMs)(Ⅰ): Steady cases[J]. International Journal of Heat and Mass Transfer, 2017, 106: 932-944. |
13 | 郑章靖, 徐阳, 何雅玲. 梯级多孔介质强化管壳式相变储热器性能研究[J]. 工程热物理学报, 2019, 40(3): 605-611. |
Zheng Z J, Xu Y, He Y L. Study on the performance of a shell-and-tube latent-heat storage unit enhanced by porous medium with graded porosity[J]. Journal of Engineering Thermophysics, 2019, 40(3): 605-611. | |
14 | 程熙文, 翟晓强, 郑春元. 梯级相变蓄冷换热器的性能分析及优化[J]. 上海交通大学学报, 2016, 50(9): 1500-1505, 1513. |
Cheng X W, Zhai X Q, Zheng C Y. Performance analysis and optimization of a cascade PCM cold storage heat exchanger[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9): 1500-1505, 1513. | |
15 | Christopher S, Parham K, Mosaffa A H, et al. A critical review on phase change material energy storage systems with cascaded configurations[J]. Journal of Cleaner Production, 2021, 283: 124653. |
16 | Cui H T, Yuan X G, Hou X B. Thermal performance analysis for a heat receiver using multiple phase change materials[J]. Applied Thermal Engineering, 2003, 23(18): 2353-2361. |
17 | 杨兆晟. 低温梯级相变蓄热器传热特性及优化研究[D]. 北京: 北京建筑大学, 2020. |
Yang Z S. Study on heat transfer characteristics and optimization of low temperature cascaded phase change thermal storage device[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020. | |
18 | 杨兆晟, 张群力, 张文婧, 等. 中温相变蓄热系统强化传热方法研究进展[J]. 化工进展, 2019, 38(10): 4389-4402. |
Yang Z S, Zhang Q L, Zhang W J, et al. Research progress on heat transfer enhancement methods for medium temperature latent heat thermal energy storage systems[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4389-4402. | |
19 | Mahdi J M, Mohammed H I, Hashim E T, et al. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system[J]. Applied Energy, 2020, 257: 113993. |
20 | Mahdi J M, Lohrasbi S, Ganji D D, et al. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676. |
21 | Yadav C, Sahoo R R. Exergy and energy comparison of organic phase change materials based thermal energy storage system integrated with engine exhaust[J]. Journal of Energy Storage, 2019, 24: 100773. |
22 | Huang P R, Wei G S, Cui L, et al. Numerical investigation of a dual-PCM heat sink using low melting point alloy and paraffin[J]. Applied Thermal Engineering, 2021, 189: 116702. |
23 | Kumar R, Verma P. An experimental and numerical study on effect of longitudinal finned tube eccentric configuration on melting behaviour of lauric acid in a horizontal tube-in-shell storage unit[J]. Journal of Energy Storage, 2020, 30: 101396. |
24 | 夏莉, 张鹏, 王如竹. 套管式相变储能单元的强化换热[J]. 化工学报, 2011, 62(S1): 37-41. |
Xia L, Zhang P, Wang R Z. Heat transfer enhancement in shell-and-tube latent thermal energy storage units[J]. CIESC Journal, 2011, 62(S1): 37-41. | |
25 | 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587. |
Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587. | |
26 | Ahmed N, Elfeky K E, Lu L, et al. Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications[J]. Renewable Energy, 2020, 152: 684-697. |
27 | Raoux S, Ielmini D, Wuttig M, et al. Phase change materials[J]. MRS Bulletin, 2012, 37(2): 118-123. |
28 | 李扬, 陶于兵. 多孔复合相变材料电池热管理模型及结构优化[J]. 科学通报, 2020, 65(S1): 213-221. |
Li Y, Tao Y B. Battery thermal management model and structure optimization of porous composite phase change material[J]. Chinese Science Bulletin, 2020, 65(S1): 213-221. | |
29 | Klett J W, McMillan A D, Gallego N C, et al. The role of structure on the thermal properties of graphitic foams[J]. Journal of Materials Science, 2004, 39: 3659-3676. |
30 | Chen S B, Saleem S, Alghamdi M N, et al. Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins[J]. Case Studies in Thermal Engineering, 2021, 25: 100939. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[9] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[12] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||