1 |
Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296.
|
2 |
Yu C Q, Huang X, Chen H, et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749): 516-520.
|
3 |
Winkler M, Coats E R, Brinkman C K. Advancing post-anoxic denitrification for biological nutrient removal[J]. Water Research, 2011, 45(18): 6119-6130.
|
4 |
Zhu G B, Peng Y Z, Wang S Y, et al. Effect of influent flow rate distribution on the performance of step-feed biological nitrogen removal process[J]. Chemical Engineering Journal, 2007, 131(1/2/3): 319-328.
|
5 |
刘小芳, 郭海燕, 张胜男, 等. 聚糖菌反硝化影响因素及内碳源转化特性[J]. 化工学报, 2019, 70(3): 1127-1134.
|
|
Liu X F, Guo H Y, Zhang S N, et al. Influencing factors of denitrification of glycans and transformation characteristics of internal carbon sources[J]. CIESC Journal, 2019, 70(3): 1127-1134.
|
6 |
Ge S J, Peng Y Z, Wang S Y, et al. Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO 3 - -N[J]. Bioresource Technology, 2012, 114: 137-143.
|
7 |
Gao X J, Zhang T, Wang B, et al. Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification[J]. Chemosphere, 2020, 252: 126624.
|
8 |
Zhao W H, Huang Y, Wang M X, et al. Post-endogenous denitrification and phosphorus removal in an alternating anaerobic/oxic/anoxic (AOA) system treating low carbon/nitrogen (C/N) domestic wastewater[J]. Chemical Engineering Journal, 2018, 339: 450-458.
|
9 |
Wang X X, Wang S Y, Zhao J, et al. Combining simultaneous nitrification-endogenous denitrification and phosphorus removal with post-denitrification for low carbon/nitrogen wastewater treatment[J]. Bioresource Technology, 2016, 220: 17-25.
|
10 |
王少坡, 彭永臻, 于德爽, 等. 常温短程内源反硝化生物脱氮[J]. 北京工业大学学报, 2005, 31(3): 298-302.
|
|
Wang S P, Peng Y Z, Yu D S, et al. Biological nitrogen removal by endogenous denitrification via nitrite at normal temperature[J]. Journal of Beijing Polytechnic University, 2005, 31(3): 298-302.
|
11 |
王晓霞, 王淑莹, 赵骥, 等. 厌氧/好氧SNEDPR系统处理低C/N污水的优化运行[J]. 中国环境科学, 2016, 36(9): 2672-2680.
|
|
Wang X X, Wang S Y, Zhao J, et al. Optimization for low C/N sewage treatment in an anaerobic/aerobic simultaneous nitrification-endogenous denitrification and phosphorous removal system[J]. China Environmental Science, 2016, 36(9): 2672-2680.
|
12 |
Miao L, Wang S Y, Li B K, et al. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate[J]. Water Research, 2016, 100: 405-412.
|
13 |
Liu J J, Yuan Y, Li B K, et al. Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source[J]. Bioresource Technology, 2017, 244: 1158-1165.
|
14 |
邱圣杰, 刘瑾瑾, 李夕耀, 等. 剩余污泥碱性发酵产物对硝化过程及性能的影响[J]. 环境科学, 2020, 41(3): 1418-1424.
|
|
Qiu S J, Liu J J, Li X Y, et al. Effect of alkaline sludge fermentation products on the nitrification process and performance[J]. Environmental Science, 2020, 41(3): 1418-1424
|
15 |
Vocks M, Adam C, Lesjean B, et al. Enhanced post-denitrification without addition of an external carbon source in membrane bioreactors[J]. Water Research, 2005, 39(14): 3360-3368.
|
16 |
王少坡, 彭永臻, 王淑莹, 等. 温度和污泥浓度对短程内源反硝化脱氮的影响[J]. 环境科学与技术, 2005, 28(4): 85-86, 103.
|
|
Wang S P, Peng Y Z, Wang S Y, et al. Effects of temperature and MLSS on endogenous denitrification via nitrite[J]. Environmental Science and Technology, 2005, 28(4): 85-86, 103.
|
17 |
Gilcreas F W. Standard methods for the examination of water and waste water[J]. American Journal of Public Health and the Nation’s Health, 1966, 56(3): 387-388.
|
18 |
Oehmen A, Zeng R J, Yuan Z G, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology and Bioengineering, 2005, 91(1): 43-53.
|
19 |
Zeng R J, van Loosdrecht M C M, Yuan Z G, et al. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering, 2003, 81(1): 92-105.
|
20 |
McIlroy S J, Albertsen M, Andresen E K, et al. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity[J]. The ISME Journal, 2014, 8(3): 613-624.
|
21 |
Gao X J, Xu Z Z, Peng Y Z, et al. The nitrification recovery capacity is the key to enhancing nitrogen removal in the AOA system at low temperatures[J]. Science of the Total Environment, 2022, 818: 151674.
|
22 |
Ji J T, Peng Y Z, Li X Y, et al. Stable long-term operation and high nitrite accumulation of an endogenous partial-denitrification (EPD) granular sludge system under mainstream conditions at low temperature[J]. Bioresource Technology, 2019, 289: 121634.
|
23 |
Ji J T, Peng Y Z, Wang B, et al. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD)[J]. Bioresource Technology, 2017, 224: 140-146.
|
24 |
Chen L P, Chen H, Hu Z K, et al. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems[J]. Water Research, 2022, 216: 118258.
|
25 |
Liu R B, Hao X D, Chen Q, et al. Research advances of Tetrasphaera in enhanced biological phosphorus removal: a review[J]. Water Research, 2019, 166: 115003.
|
26 |
Oehmen A, Lemos P C, Carvalho G, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300.
|
27 |
Ginige M P, Keller J, Blackall L L. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography[J]. Applied and Environmental Microbiology, 2005, 71(12): 8683-8691.
|
28 |
Third K A, Gibbs B, Newland M, et al. Long-term aeration management for improved N-removal via SND in a sequencing batch reactor[J]. Water Research, 2005, 39(15): 3523-3530.
|
29 |
Wang X F, Oehmen A, Freitas E B, et al. The link of feast-phase dissolved oxygen (DO) with substrate competition and microbial selection in PHA production[J]. Water Research, 2017, 112: 269-278.
|
30 |
Zhou Z, Shen X L, Jiang L M, et al. Modeling of multimode anaerobic/anoxic/aerobic wastewater treatment process at low temperature for process optimization[J]. Chemical Engineering Journal, 2015, 281: 644-650.
|
31 |
Ge S J, Peng Y Z, Wang S Y, et al. Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios[J]. Bioresource Technology, 2010, 101(23): 9012-9019.
|
32 |
彭永臻, 马斌. 低C/N比条件下高效生物脱氮策略分析[J]. 环境科学学报, 2009, 29(2): 225-230.
|
|
Peng Y Z, Ma B. Review of biological nitrogen removal enhancement technologies and processes under low C/N ratio[J]. Acta Scientiae Circumstantiae, 2009, 29(2): 225-230.
|
33 |
Wang Y Y, Lin X M, Zhou D, et al. Nitric oxide and nitrous oxide emissions from a full-scale activated sludge anaerobic/anoxic/oxic process[J]. Chemical Engineering Journal, 2016, 289: 330-340.
|
34 |
Li J W, Peng Y Z, Zhang L, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160: 178-187.
|