化工学报 ›› 2022, Vol. 73 ›› Issue (2): 595-603.DOI: 10.11949/0438-1157.20211180
收稿日期:
2021-08-16
修回日期:
2021-11-19
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
郭亚丽
作者简介:
谷雨(1985—),男,博士研究生,基金资助:
Yu GU(),Luyuan GONG,Yali GUO(),Shengqiang SHEN
Received:
2021-08-16
Revised:
2021-11-19
Online:
2022-02-05
Published:
2022-02-18
Contact:
Yali GUO
摘要:
对换热长度为3.4 m、内径为38 mm的真空水平管内的蒸汽凝结流动换热特性进行了实验研究。分析了蒸汽质量流率小于9 kg/(m2·s),蒸汽饱和温度为50、60和70℃,换热温差为3~7℃时对凝结过程的影响。通过对分层流动冷凝换热机理分析,建立了热分区角计算模型。实验结果表明,热分区角随着质量流率的增加而增加,随着传热温差的增大而增大;饱和温度对管内凝结的局部传热系数和热分区角影响较小。通过以热分区角为分区界限,建立了局部传热系数经验关联式,在预测实验工况下,对于管顶部膜状冷凝区,预测精度在±25%以内;对于管底部冷凝液对流换热区,预测精度在+25%~-35%。
中图分类号:
谷雨, 龚路远, 郭亚丽, 沈胜强. 低质量流率蒸汽真空水平管内凝结传热特性的实验研究[J]. 化工学报, 2022, 73(2): 595-603.
Yu GU, Luyuan GONG, Yali GUO, Shengqiang SHEN. Experimental study on condensation heat transfer characteristics of low mass flow rate steam in a vacuum horizontal tube[J]. CIESC Journal, 2022, 73(2): 595-603.
参数 | 不确定度 |
---|---|
实验管内径D | ±0.05 mm |
实验管有效换热长度L | ±2 mm |
蒸汽入口饱和温度Tsat | ±0.046℃ |
冷却水总传热温差ΔTs,c | ±0.14℃ |
冷却水流量mc | ±1.3% |
管内凝结段传热量Q | ±14.1% |
传热系数h | ±15.7% |
蒸汽质量流率G | ±2.5% |
质量含气率x | ±14.1% |
表1 实验的直接和间接不确定度
Table 1 The direct and indirect uncertainty of the experiment
参数 | 不确定度 |
---|---|
实验管内径D | ±0.05 mm |
实验管有效换热长度L | ±2 mm |
蒸汽入口饱和温度Tsat | ±0.046℃ |
冷却水总传热温差ΔTs,c | ±0.14℃ |
冷却水流量mc | ±1.3% |
管内凝结段传热量Q | ±14.1% |
传热系数h | ±15.7% |
蒸汽质量流率G | ±2.5% |
质量含气率x | ±14.1% |
图10 管顶部凝结换热区局部传热系数预测值与实验值对比
Fig.10 Comparison between the predicted value and the experimental value of the local heat transfer coefficient in the condensation heat transfer zone at the top of the tube
图11 管底部积液对流换热区局部传热系数预测值与实验值对比
Fig.11 Comparison between the predicted value and the experimental value of the local heat transfer coefficient in the condensation convective heat transfer zone at the bottom of the tube
1 | Nie Z S, Bi Q C, Lei S Y, et al. Experimental study on condensation of high-pressure steam in a horizontal tube with pool boiling outside[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2523-2533. |
2 | Meyer J P, Ewim D R E. Heat transfer coefficients during the condensation of low mass fluxes in smooth horizontal tubes[J]. International Journal of Multiphase Flow, 2018, 99: 485-499. |
3 | Nasrfard H, Rahimzadeh H, Ahmadpour A, et al. Experimental study of condensation heat transfer for R141b in intermittent flow regime within a smooth horizontal tube[J]. Experimental Thermal and Fluid Science, 2019, 105: 109-122. |
4 | Wang Y X, Mu X S, Shen S Q, et al. Heat transfer characteristics of steam condensation flow in vacuum horizontal tube[J]. International Journal of Heat and Mass Transfer, 2017, 108: 128-135. |
5 | Kim S M, Mudawar I. Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 238-250. |
6 | Thome J R, El Hajal J, Cavallini A. Condensation in horizontal tubes(2): New heat transfer model based on flow regimes[J]. International Journal of Heat and Mass Transfer, 2003, 46(18): 3365-3387. |
7 | Shah M M. An improved and extended general correlation for heat transfer during condensation in plain tubes[J]. HVAC&R Research, 2009, 15(5): 889-913. |
8 | Longo G A, Mancin S, Righetti G, et al. Saturated vapour condensation of R410A inside a 4 mm ID horizontal smooth tube: comparison with the low GWP substitute R32[J]. International Journal of Heat and Mass Transfer, 2018, 125: 702-709. |
9 | Cavallini A, Col D D, Doretti L, et al. Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design[J]. Heat Transfer Engineering, 2006, 27(8): 31-38. |
10 | Guo Q, Li M X, Gu H X. Condensation heat transfer characteristics of low-GWP refrigerants in a smooth horizontal mini tube[J]. International Journal of Heat and Mass Transfer, 2018, 126: 26-38. |
11 | Deng H, Rossato M, Fernandino M, et al. A new simplified model for condensation heat transfer of zeotropic mixtures inside horizontal tubes[J]. Applied Thermal Engineering, 2019, 153: 779-790. |
12 | Li P H, Norris S. Heat transfer correlations for CO2 flowing condensation in a tube at low temperatures[J]. Applied Thermal Engineering, 2016, 93: 872-883. |
13 | Chato J.Laminar condensation of inside horizontal and inclined tubes[J]. ASHRAE Journal, 1962: 52-60. |
14 | Jaster H, Kosky P G. Condensation heat transfer in a mixed flow regime[J]. International Journal of Heat and Mass Transfer, 1976, 19(1): 95-99. |
15 | Tandon T N, Varma H K, Gupta C P. Heat transfer during forced convection condensation inside horizontal tube[J]. International Journal of Refrigeration, 1995, 18(3): 210-214. |
16 | Singh A, Ohadi M M, Dessiatoun S V. Empirical Modeling of Stratified-Wavy Flow Condensation Heat Transfer in Smooth Horizontal Tubes[M]. Atlanta, GA (United States): American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1996. |
17 | Rosson H F, Meyers J A. Point values of condensing film coefficients inside a horizontal tube[J]. Chemical Engineering Progress Symposium Series,1965, 61(59): 190-199. |
18 | 徐慧强, 孙中宁, 谷海峰, 等. 水平管内纯饱和蒸汽强制对流冷凝局部换热特性[J]. 化工学报, 2015, 66(1): 92-98. |
Xu H Q, Sun Z N, Gu H F, et al. Local heat transfer characteristics of saturated steam forced convection condensation inside horizontal tube[J]. CIESC Journal, 2015, 66(1): 92-98. | |
19 | Tandon T N, Varma H K, Gupta C P. A new flow regimes map for condensation inside horizontal tubes[J]. Journal of Heat Transfer, 1982, 104(4): 763-768. |
20 | Bohdal T, Charun H, Sikora M. Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels[J]. International Journal of Heat and Mass Transfer, 2011, 54(9/10): 1963-1974. |
21 | Dobson M K, Chato J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213. |
22 | Cavallini A, Zecchin R. A dimensionless correlation for heat transfer in forced convection condensation[C]//Proceeding of International Heat Transfer Conference. Tokyo, Japan, 1974: 309-313. |
23 | Akers W. Condensation inside horizontal tubes[J]. Chemical Engineering Progress Symposium Series, 1960: 145-149. |
24 | Shah M M. A general correlation for heat transfer during film condensation inside pipes[J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 547-556. |
25 | Tang L Y, Ohadi M, Johnson A T. Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410 refrigerants(Ⅱ): Design equations[J]. Journal of Enhanced Heat Transfer, 2000, 7(5): 311-325. |
26 | Qi C, Chen X T, Wang W, et al. Experimental investigation on flow condensation heat transfer and pressure drop of nitrogen in horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2019, 132: 985-996. |
27 | Shah M M. A correlation for heat transfer during condensation in horizontal mini/micro channels[J]. International Journal of Refrigeration, 2016, 64: 187-202. |
28 | Shen S Q, Wang Y X, Yuan D Y. Circumferential distribution of local heat transfer coefficient during steam stratified flow condensation in vacuum horizontal tube[J]. International Journal of Heat and Mass Transfer, 2017, 114: 816-825. |
29 | Dobson M K, Chato J C, Wattelet J P, et al. Heat transfer and flow regimes during condensation in horizontal tubes[R]. Urbana: University of Illinois, 1994: 129-131. |
30 | Dieck R H. Measurement Uncertainty — Methods and Applications[M]. 4th ed. USA: International Society of Automation, 2007: 112-141. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[3] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[4] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[5] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[6] | 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072. |
[7] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[8] | 鲁军辉, 李俊明. H2O-CO2、H2O-N2、H2O-He水平管外自然对流凝结换热特性研究[J]. 化工学报, 2022, 73(9): 3870-3879. |
[9] | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
[10] | 陆至彬, 李依梦, 何畅, 张冰剑, 陈清林, 潘明. 集成分区耦合策略的物理信息神经网络模拟共轭传热过程研究[J]. 化工学报, 2022, 73(12): 5483-5493. |
[11] | 刘冉, 李杰, 王玉兵, 詹洪波, 张大林. 微小菱形离散肋通道中R134a的冷凝换热实验研究[J]. 化工学报, 2022, 73(11): 4938-4947. |
[12] | 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481. |
[13] | 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628. |
[14] | 刘腾庆, 闫文韬, 杨鑫, 汪双凤. 强化平板热管传热性能的研究进展[J]. 化工学报, 2021, 72(11): 5468-5480. |
[15] | 郭达, 祁贵生, 刘有智, 焦纬洲, 闫文超, 高雨松. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||