化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2514-2528.DOI: 10.11949/0438-1157.20220157
收稿日期:
2022-01-27
修回日期:
2022-04-20
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
刘新华
作者简介:
胡善伟(1988—),男,博士,副研究员,基金资助:
Received:
2022-01-27
Revised:
2022-04-20
Online:
2022-06-05
Published:
2022-06-30
Contact:
Xinhua LIU
摘要:
气固流化床反应器是典型的具有多尺度非均匀动态结构的复杂系统。实现对该类反应器定量描述和定向调控的关键是深入了解系统内介尺度结构的形成和演化特征。能量最小多尺度(EMMS)方法为气固非均匀系统的量化表征提供了一种通用的建模思路。首先回顾了EMMS理论在构建曳力本构关系方面的应用,重点介绍了本课题组在EMMS曳力模型普适化方面所做的部分工作;随后对介尺度结构时空动态演化行为的群平衡建模方法进行了论述,并给出了群平衡和结构曳力模型相耦合的连续介质模拟框架;最后讨论了EMMS原理在预测反应器宏尺度动力学方面的应用,包括模型在不同流域的拓展、操作相图的绘制以及循环流化床的全回路稳态建模方法等。
中图分类号:
胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528.
Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems[J]. CIESC Journal, 2022, 73(6): 2514-2528.
72 | Hu S W, Liu X H. Development of a hydrodynamic model and the corresponding virtual software for dual-loop circulating fluidized beds[J]. Frontiers of Chemical Science and Engineering, 2021, 15(3): 579-590. |
73 | Liu X H, Zhao M, Hu S W, et al. Three-dimensional CFD simulation of tapered gas-solid risers by coupling the improved EMMS drag[J]. Powder Technology, 2019, 352: 305-313. |
74 | Niu L, Huang Y H, Chu Z M, et al. Identification of mesoscale flow in a bubbling and turbulent gas-solid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8456-8471. |
75 | Zhang C X, Li P L, Lei C, et al. Experimental study of non-uniform bubble growth in deep fluidized beds[J]. Chemical Engineering Science, 2018, 176: 515-523. |
1 | Li J H, Kwauk M. Particle-Fluid Two-Phase Flow: the Energy-Minimization Multi-Scale Method[M]. Beijing: Metallurgical Industry Press, 1994. |
2 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
76 | 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9. |
Chen W, Ren Y. Similarity between fluidization and phase transition[J]. CIESC Journal, 2019, 70(1): 1-9. | |
77 | 马旺宇, 罗正鸿. Geldart-B类颗粒在气固流化床中的床层膨胀与流型转变[J]. 化工学报, 2019, 70(7): 2472-2479. |
Ma W Y, Luo Z H. Bed expansion and fluidized states change of Geldart-B particle gas-solid fluidized bed[J]. CIESC Journal, 2019, 70(7): 2472-2479. | |
78 | 王荘, 吕潇, 邵媛媛, 祝京旭. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927. |
3 | Sundaresan S, Ozel A, Kolehmainen J. Toward constitutive models for momentum, species, and energy transport in gas-particle flows[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 61-81. |
4 | Su M Z, Zhao H B. Modifying the inter-phase drag via solid volume fraction gradient for CFD simulation of fast fluidized beds[J]. AIChE Journal, 2017, 63(7): 2588-2598. |
5 | Zhang D Z, VanderHeyden W B. The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows[J]. International Journal of Multiphase Flow, 2002, 28(5): 805-822. |
78 | Wang Z, Lyu X, Shao Y Y, et al. Early exploration of fluidization theory and its inspiration to the future[J]. CIESC Journal, 2021, 72(12): 5904-5927. |
79 | Kwauk M. Generalized fluidization(Ⅰ): Steady-state motion[J]. Science in China, Ser.A, 1963, 6(4): 587-612. |
6 | Ye M, Wang J W, van der Hoef M A, et al. Two-fluid modeling of Geldart A particles in gas-fluidized beds[J]. Particuology, 2008, 6(6): 540-548. |
7 | Zimmermann S, Taghipour F. CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9818-9827. |
8 | Gao J S, Lan X Y, Fan Y P, et al. CFD modeling and validation of the turbulent fluidized bed of FCC particles[J]. AIChE Journal, 2009, 55(7): 1680-1694. |
9 | Igci Y, Andrews A T I, Sundaresan S, et al. Filtered two-fluid models for fluidized gas-particle suspensions[J]. AIChE Journal, 2008, 54(6): 1431-1448. |
10 | Schneiderbauer S, Pirker S. Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds[J]. AIChE Journal, 2014, 60(3): 839-854. |
11 | Ozel A, Fede P, Simonin O. Development of filtered Euler-Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63. |
12 | Radl S, Sundaresan S. A drag model for filtered Euler-Lagrange simulations of clustered gas-particle suspensions[J]. Chemical Engineering Science, 2014, 117: 416-425. |
13 | Schneiderbauer S, Puttinger S, Pirker S. Comparative analysis of subgrid drag modifications for dense gas-particle flows in bubbling fluidized beds[J]. AIChE Journal, 2013, 59(11): 4077-4099. |
14 | Schneiderbauer S. A spatially-averaged two-fluid model for dense large-scale gas-solid flows[J]. AIChE Journal, 2017, 63(8): 3544-3562. |
15 | Milioli C C, Milioli F E, Holloway W, et al. Filtered two-fluid models of fluidized gas-particle flows: new constitutive relations[J]. AIChE Journal, 2013, 59(9): 3265-3275. |
16 | Gao X, Li T W, Sarkar A, et al. Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes[J]. Chemical Engineering Science, 2018, 184: 33-51. |
17 | Chen X, Song N, Jiang M, et al. Theoretical and numerical analysis of key sub-grid quantities' effect on filtered Eulerian drag force[J]. Powder Technology, 2020, 372: 15-31. |
18 | Zhu L T, Liu Y X, Tang J X, et al. A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers[J]. Chemical Engineering Science, 2019, 204: 228-245. |
19 | Cloete J H, Cloete S, Municchi F, et al. Development and verification of anisotropic drag closures for filtered two fluid models[J]. Chemical Engineering Science, 2018, 192: 930-954. |
20 | Jiang M, Zhang Y, Yu Y X, et al. A scale-independent modeling method for filtered drag in fluidized gas-particle flows[J]. Powder Technology, 2021, 394: 1050-1076. |
21 | Zhu L T, Bo O Y, Lei H, et al. Conventional and data-driven modeling of filtered drag, heat transfer, and reaction rate in gas-particle flows[J]. AIChE Journal, 2021, 67(8): e17299. |
22 | Capecelatro J, Desjardins O, Fox R O. Strongly coupled fluid-particle flows in vertical channels(Ⅰ): Reynolds-averaged two-phase turbulence statistics[J]. Physics of Fluids, 2016, 28(3): 033306. |
23 | Schneiderbauer S, Saeedipour M. Approximate deconvolution model for the simulation of turbulent gas-solid flows: an a priori analysis[J]. Physics of Fluids, 2018, 30(2): 023301. |
24 | Wang J W, van der Hoef M A, Kuipers J A M. Coarse grid simulation of bed expansion characteristics of industrial-scale gas-solid bubbling fluidized beds[J]. Chemical Engineering Science, 2010, 65(6): 2125-2131. |
25 | 肖海涛, 祁海鹰, 由长福, 等. 循环流化床气固曳力模型[J]. 计算物理, 2003, 20(1): 25-30. |
Xiao H T, Qi H Y, You C F, et al. Theoretical model of drag between gas and solid phase in circulating fluidized bed[J]. Chinese Journal of Computation Physics, 2003, 20(1): 25-30. | |
26 | Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80. |
27 | Ge W, Li J H. Physical mapping of fluidization regimes—the EMMS approach[J]. Chemical Engineering Science, 2002, 57(18): 3993-4004. |
28 | Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach— extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231. |
29 | Wang J W, Ge W, Li J H. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J]. Chemical Engineering Science, 2008, 63(6): 1553-1571. |
30 | Hu S W, Liu X H, Zhang N, et al. Quantifying cluster dynamics to improve EMMS drag law and radial heterogeneity description in coupling with gas-solid two-fluid method[J]. Chemical Engineering Journal, 2017, 307: 326-338. |
31 | Tian Y J, Lu B N, Li F, et al. A steady-state EMMS drag model for fluidized beds[J]. Chemical Engineering Science, 2020, 219: 115616. |
32 | Lungu M, Zhou Y F, Wang J D, et al. A CFD study of a bi-disperse gas-solid fluidized bed: effect of the EMMS sub grid drag correction[J]. Powder Technology, 2015, 280: 154-172. |
33 | Wang S, Lu H L, Liu G D, et al. Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds[J]. Powder Technology, 2011, 208(1): 98-110. |
34 | Jiang X X, Li D, Wang S Y, et al. Comparative analysis of heterogeneous gas-solid flow using dynamic cluster structure-dependent drag model in risers[J]. International Journal of Multiphase Flow, 2020, 122: 103126. |
35 | Lu B N, Wang W, Li J H. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447. |
36 | Du S H, Liu L J. A local cluster-structure-dependent drag model for Eulerian simulation of gas-solid flow in CFB risers[J]. Chemical Engineering Journal, 2019, 368: 687-699. |
37 | Nikolopoulos A, Nikolopoulos N, Charitos A, et al. High-resolution 3-D full-loop simulation of a CFB carbonator cold model[J]. Chemical Engineering Science, 2013, 90: 137-150. |
38 | Lu B N, Zhang N, Wang W, et al. Extending EMMS-based models to CFB boiler applications[J]. Particuology, 2012, 10(6): 663-671. |
39 | Chen C, Dai Q T, Qi H Y. Improvement of EMMS drag model for heterogeneous gas-solid flows based on cluster modeling[J]. Chemical Engineering Science, 2016, 141: 8-16. |
40 | Shah M T, Utikar R P, Tade M O, et al. Simulation of gas-solid flows in riser using energy minimization multiscale model: effect of cluster diameter correlation[J]. Chemical Engineering Science, 2011, 66(14): 3291-3300. |
41 | Nikolopoulos A, Papafotiou D, Nikolopoulos N, et al. An advanced EMMS scheme for the prediction of drag coefficient under a 1.2 MWth CFBC isothermal flow ( Ⅰ ) : Numerical formulation[J]. Chemical Engineering Science, 2010, 65(13): 4080-4088. |
42 | Dai Q T, Chen C, Qi H Y. Influence of meso-scale structures on drag in gas-solid fluidized beds[J]. Powder Technology, 2016, 288: 87-95. |
43 | Shi Z S, Wang W, Li J H. A bubble-based EMMS model for gas-solid bubbling fluidization[J]. Chemical Engineering Science, 2011, 66(22): 5541-5555. |
44 | Hong K, Shi Z S, Ullah A, et al. Extending the bubble-based EMMS model to CFB riser simulations[J]. Powder Technology, 2014, 266: 424-432. |
45 | Liu X H, Jiang Y F, Liu C F, et al. Hydrodynamic modeling of gas-solid bubbling fluidization based on energy-minimization multiscale (EMMS) theory[J]. Industrial & Engineering Chemistry Research, 2014, 53(7): 2800-2810. |
46 | Lv X L, Li H Z, Zhu Q S. Simulation of gas-solid flow in 2D/3D bubbling fluidized beds by combining the two-fluid model with structure-based drag model[J]. Chemical Engineering Journal, 2014, 236: 149-157. |
47 | Li J G, Tian X Y, Yang B L. Hydromechanical simulation of a bubbling fluidized bed using an extended bubble-based EMMS model[J]. Powder Technology, 2017, 313: 369-381. |
48 | Cheng J N, Fan X Q, Sun J Y, et al. Evolution and fluidization behaviors of wet agglomerates based on formation-fragmentation competition mechanism[J]. Chemical Engineering Science, 2022, 247: 116933. |
49 | Wang S, Lu H L, Zhang Q H, et al. Modeling of bubble-structure-dependent drag for bubbling fluidized beds[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15776-15785. |
50 | Ullah A, Hong K, Chilton S, et al. Bubble-based EMMS mixture model applied to turbulent fluidization[J]. Powder Technology, 2015, 281: 129-137. |
51 | Hu S W, Liu X H. A general EMMS drag model applicable for gas-solid turbulent beds and cocurrent downers[J]. Chemical Engineering Science, 2019, 205: 14-24. |
52 | Zou Z, Liu W M, Yan D, et al. CFD simulations of tapered bubbling/turbulent fluidized beds with/without gas distributor based on the structure-based drag model[J]. Chemical Engineering Science, 2019, 202: 157-168. |
53 | Ullah A, Wang W, Li J H. Evaluation of drag models for cocurrent and countercurrent gas-solid flows[J]. Chemical Engineering Science, 2013, 92: 89-104. |
54 | Hu S W, Liu X H. A simple and general sub-grid drag model for gas-solid fast fluidization[J]. Chemical Engineering Journal, 2021, 421: 129922. |
55 | Zhu L T, Tang J X, Luo Z H. Machine learning to assist filtered two-fluid model development for dense gas-particle flows[J]. AIChE Journal, 2020, 66(6): e16973. |
56 | Nikolopoulos A, Samlis C, Zeneli M, et al. Introducing an artificial neural network energy minimization multi-scale drag scheme for fluidized particles[J]. Chemical Engineering Science, 2021, 229: 116013. |
57 | Jiang Y D, Kolehmainen J, Gu Y L, et al. Neural-network-based filtered drag model for gas-particle flows[J]. Powder Technology, 2019, 346: 403-413. |
58 | Yang Z, Lu B N, Wang W. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds[J]. Chemical Engineering Science, 2021, 246: 117003. |
59 | Yan W C, Luo Z H, Lu Y H, et al. A CFD-PBM-PMLM integrated model for the gas-solid flow fields in fluidized bed polymerization reactors[J]. AIChE Journal, 2012, 58(6): 1717-1732. |
60 | Chen X Z, Wang J W, Li J H. Coarse grid simulation of heterogeneous gas-solid flow in a CFB riser with polydisperse particles[J]. Chemical Engineering Journal, 2013, 234: 173-183. |
61 | Wang T, Xia Z H, Chen C X. Coupled CFD-PBM simulation of bubble size distribution in a 2D gas-solid bubbling fluidized bed with a bubble coalescence and breakup model[J]. Chemical Engineering Science, 2019, 202: 208-221. |
62 | Hu S W, Liu X H. A CFD-PBM-EMMS integrated model applicable for heterogeneous gas-solid flow[J]. Chemical Engineering Journal, 2020, 383: 123122. |
63 | Hu S W, Liu X H. CFD-PBM simulation of gas-solid bubbling flow with structure-dependent drag coefficients[J]. Chemical Engineering Journal, 2021, 413: 127503. |
64 | Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—the EMMS Paradigm[J]. Chemical Engineering Science, 2011, 66(19): 4426-4458. |
65 | Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23. |
66 | Ma Y L, Liu M Y, Zhang Y. An improved meso-scale flow model of gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 2018, 179: 243-256. |
67 | Hu S W, Liu X H, Li J H. Steady-state modeling of axial heterogeneity in CFB risers based on one-dimensional EMMS model[J]. Chemical Engineering Science, 2013, 96: 165-173. |
68 | Zhang Z X, Hu S W, Liu X H, et al. Modeling the hydrodynamics of cocurrent gas-solid downers according to energy-minimization multi-scale theory[J]. Particuology, 2016, 29: 110-119. |
69 | Liu J B, Liu X H, Ge W. EMMS-based modeling of gas-solid generalized fluidization: towards a unified phase diagram[J]. Chinese Journal of Chemical Engineering, 2021, 29: 27-34. |
70 | Liu X H, Hu S W, Jiang Y F, et al. Extension and application of energy-minimization multi-scale (EMMS) theory for full-loop hydrodynamic modeling of complex gas-solid reactors[J]. Chemical Engineering Journal, 2015, 278: 492-503. |
71 | Tu Q Y, Wang H G, Ocone R. Application of three-dimensional full-loop CFD simulation in circulating fluidized bed combustion reactors — a review[J]. Powder Technology, 2022, 399: 117181. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[8] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[9] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[10] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[11] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
[12] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[13] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[14] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[15] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 327
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||