化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2982-2995.doi: 10.11949/0438-1157.20211720

• 催化、动力学与反应器 • 上一篇    下一篇

原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟

陈昇1(),王梦钶1,2(),鲁波娜3,4,李秀峰1,刘岑凡1,刘梦溪2(),范怡平2,卢春喜2   

  1. 1.中国特种设备检测研究院,炼油与化工装备风险防控国家市场监管技术创新中心,北京 100029
    2.中国石油大学(北京)重质油国家重点实验室,北京 102249
    3.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
    4.中国科学院大学化工学院,北京 101408
  • 收稿日期:2021-12-02 修回日期:2022-03-29 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 陈昇,刘梦溪 E-mail:chen_sheng1987@sina.com;15737814797@163.com;mengxiliu@sina.com.cn
  • 作者简介:陈昇(1987—),男, 博士,高工,chen_sheng1987@sina.com|王梦钶(1997—),女,硕士研究生,15737814797@163.com
  • 基金资助:
    国家市场监督管理总局科技计划项目(2019MK132);国家自然科学基金项目(21808245);中国特种设备检测研究院二级学科建设项目(2021XKTD004)

CFD investigation of effects of feedstock oil vaporization on FCC cracking reaction and coking

Sheng CHEN1(),Mengke WANG1,2(),Bona LU3,4,Xiufeng LI1,Cenfan LIU1,Mengxi LIU2(),Yiping FAN2,Chunxi LU2   

  1. 1.Technological Innovation Center of Risk Prevention and Control for Refining and Chemical Equipment, China Special Equipment Inspection and Research Institute, Beijing 100029, China
    2.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
    3.State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    4.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2021-12-02 Revised:2022-03-29 Published:2022-07-05 Online:2022-08-01
  • Contact: Sheng CHEN,Mengxi LIU E-mail:chen_sheng1987@sina.com;15737814797@163.com;mengxiliu@sina.com.cn

摘要:

为考察原料油汽化特性影响,在一套百万吨级工业FCC提升管中,基于多相欧拉模型耦合EMMS曳力和传质、油滴汽化和十二集总反应动力学模型,采用三维CFD模拟研究气液固三相流动、汽化、反应、结焦的复杂过程,新开发结焦预测模型定量预测结焦状况,对比研究不同原料油雾化液滴粒径和起始汽化温度下各相和反应组分浓度场、温度场分布和结焦程度。结果表明,模拟方法可较准确预测汽化、反应生焦和结焦过程,不同雾化液滴粒径和起始汽化温度通过流场分布和汽化快慢影响液相油滴汽化率和反应转化率;合适液滴粒径(60 μm)和起始汽化温度(654 K)可提升轻油、汽油、液化石油气目标产品收率并改善结焦程度。

关键词: 催化裂化, 多相反应, 汽化, 结焦, CFD

Abstract:

To investigate the influence of feedstock oil vaporization characteristics, a multi-phase Eulerian model coupling with the models of EMMS drag and mass transfer, oil droplet vaporization and twelve lumped reaction kinetics were used to simulate a million ton scale industrial FCC riser for predicting complex three-phase flow, reaction and coking behaviors. A coking model was proposed to predict the coking extent. The distribution of concentration and temperature of each phase, reaction component and coking extent were investigated under different droplet sizes of atomized feedstock oil and initial vaporization temperatures. The results show that the simulation can well predict the vaporization, reaction coking and fixed coking. The atomized droplet size and initial vaporization temperature affect the oil droplet vaporization rate and cracking reaction conversion rate through the interphase momentum transfer and vaporization speed. Appropriate droplet size (60 μm) and initial vaporization temperature (654 K) can improve the yield of light oil, gasoline and liquefied petroleum gas and alleviate the degree of coking.

Key words: fluid catalytic cracking, multiphase reaction, vaporization, coking, computational fluid dynamics

中图分类号: 

  • TE 624
1 卢春喜, 刘梦溪, 范怡平. 催化裂化反应系统关键装备技术[M]. 北京: 中国石化出版社, 2019: 18.
Lu C X, Liu M X, Fan Y P. Key Equipment Technologies of Fluid Catalytic Cracking Reaction System[M]. Beijing: China Petrochemical Press, 2019: 18.
2 侯芙生. 充分发挥催化裂化深度加工的骨干作用[J]. 当代石油石化, 2003, 11(6): 1-5.
Hou F S. Play the key role of the fluid catalytic cracking fully in the deep conversion processing[J]. Petroleum & Petrochemical Today, 2003, 11(6): 1-5.
3 范怡平, 卢春喜. 催化裂化提升管进料段内多相流动及其结构优化[J]. 化工学报, 2018, 69(1): 249-258.
Fan Y P, Lu C X. Multiphase flow characteristics and structural optimization in feed injection zone of FCC riser[J]. CIESC Journal, 2018, 69(1): 249-258.
4 陈俊武, 卢捍卫. 催化裂化在炼油厂中的地位和作用展望: 催化裂化仍将发挥主要作用[J]. 石油学报(石油加工), 2003, 19(1): 1-11.
Chen J W, Lu H W. Prospects of status and role of FCC in refinery: FCC will continue to play a leading role in petroleum refining industry[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2003, 19(1): 1-11.
5 鲁维民. 重油催化裂化装置的能耗分析[J]. 石油炼制与化工, 2010, 41(12): 61-64.
Lu W M. An analysis of energy consumption in a FCC unit processing heavy feedstock[J]. Petroleum Processing and Petrochemicals, 2010, 41(12): 61-64.
6 Gao J S, Xu C M, Lin S X, et al. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J]. AIChE Journal, 1999, 45(5): 1095-1113.
7 Fan Y P, Ye S, Chao Z X, et al. Gas-solid two-phase flow in FCC riser[J]. AIChE Journal, 2002, 48(9): 1869-1887.
8 闫子涵, 王钊, 陈昇, 等. 新型催化裂化提升管进料段油、剂两相混合特性[J]. 化工学报, 2016, 67(8): 3304-3312.
Yan Z H, Wang Z, Chen S, et al. Matching between oil and catalyst in new scheme of FCC feed injection[J]. CIESC Journal, 2016, 67(8): 3304-3312.
9 Mauleon J L, Courcelle J C. FCC heat balance critical for heavy fuels[J]. Oil&Gas Journal, 1985, 83(42): 42-64.
10 Buchanan J S. Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers[J]. Industrial & Engineering Chemistry Research, 1994, 33(12): 3104-3111.
11 Theologos K N, Lygeros A I, Markatos N C. Feedstock atomization effects on FCC riser reactors selectivity[J]. Chemical Engineering Science, 1999, 54(22): 5617-5625.
12 Couch K A, Seibert K D, Van Opdorp P J. Improve FCC yields to meet changing environment-part 1[J]. Hydrocarbon Processing, 2004, 83(9): 77-81.
13 Gao J S, Xu C M, Lin S X, et al. Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors[J]. AIChE Journal, 2001, 47(3): 677-692.
14 Wang W, Lu B N, Geng J W, et al. Mesoscale drag modeling: a critical review[J]. Current Opinion in Chemical Engineering, 2020, 29: 96-103.
15 鲁波娜, 程从礼, 鲁维民, 等. 基于多尺度模型的MIP提升管反应历程数值模拟[J]. 化工学报, 2013, 64(6): 1983-1992.
Lu B N, Cheng C L, Lu W M, et al. Numerical simulation of reaction process in MIP riser based on multi-scale model[J]. CIESC Journal, 2013, 64(6): 1983-1992.
16 Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
17 鲁波娜, 张景远, 王维, 等. FCC反应过程的CFD模拟进展[J]. 化工学报, 2016, 67(8): 3121-3132.
Lu B N, Zhang J Y, Wang W, et al. CFD modeling of FCC reaction process: a review[J]. CIESC Journal, 2016, 67(8): 3121-3132.
18 Chen S, Fan Y P, Yan Z H, et al. CFD optimization of feedstock injection angle in a FCC riser[J]. Chemical Engineering Science, 2016, 153: 58-74.
19 陈昇, 范怡平, 闫子涵, 等. 催化裂化提升管进料区新型助流剂技术的CFD模拟[J]. 化工学报, 2016, 67(8): 3179-3190.
Chen S, Fan Y P, Yan Z H, et al. CFD simulation of novel fluidizer technology in feedstock injection zone of FCC riser[J]. CIESC Journal, 2016, 67(8): 3179-3190.
20 Adamczyk W P, Klimanek A, Białecki R A, et al. Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed[J]. Particuology, 2014, 15: 129-137.
21 许峻, 范怡平, 钱筱婕, 等. 催化裂化提升管进料段喷嘴射流运动-扩散特性的分析[J]. 化工学报, 2020, 71(4): 1450-1459.
Xu J, Fan Y P, Qian X J, et al. Theoretical analysis of motion-diffusion characteristics in feed injection zone of FCC riser[J]. CIESC Journal, 2020, 71(4): 1450-1459.
22 Chang J, Wang X, Liu W Y, et al. CFD modeling of hydrodynamics and kinetic reactions in a heavy oil riser reactor: influence of downward feed injection scheme[J]. Powder Technology, 2020, 361: 136-144.
23 Du Y P, Chen X P, Li S, et al. Revisiting a large-scale FCC riser reactor with a particle-scale model[J]. Chemical Engineering Science, 2022, 249: 117300.
24 Nayak S V, Joshi S L, Ranade V V. Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J]. Chemical Engineering Science, 2005, 60(22): 6049-6066.
25 Lopes G C, Rosa L M D, Mori M, et al. The importance of using three-phase 3-D model in the simulation of industrial FCC risers[J]. Chemical Engineering Transactions (CET Journal), 2011, 24: 1417-1422.
26 Patel R, Wang D W, Zhu C, et al. Effect of injection zone cracking on fluid catalytic cracking[J]. AIChE Journal, 2013, 59(4): 1226-1235.
27 李双平. 催化裂化提升管结焦原因及对策[J]. 炼油技术与工程, 2009, 39(5): 23-25.
Li S P. Coking in FCC riser and preventive measures[J]. Petroleum Refinery Engineering, 2009, 39(5): 23-25.
28 钮根林, 杨朝合, 王瑜, 等. 重油催化裂化装置结焦原因分析及抑制措施[J]. 石油大学学报(自然科学版), 2002, 26(1): 79-82.
Niu G L, Yang C H, Wang Y, et al. Cause analysis of coking in residual catalytic cracking unit and technical measures[J]. Journal of the University of Petroleum, China, 2002, 26(1): 79-82.
29 Chen S, Fan Y P, Kang H Y, et al. Gas-solid-liquid reactive CFD simulation of an industrial RFCC riser with investigation of feed injection[J]. Chemical Engineering Science, 2021, 242: 116740.
30 Lu B N, Wang W, Li J H. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447.
31 Liu C F, Wang W, Zhang N, et al. Structure-dependent multi-fluid model for mass transfer and reactions in gas-solid fluidized beds[J]. Chemical Engineering Science, 2015, 122: 114-129.
32 Law C K. Recent advances in droplet vaporization and combustion[J]. Progress in Energy and Combustion Science, 1982, 8(3): 171-201.
[1] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[2] 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
[3] 刘鑫, 潘阳, 刘公平, 方静, 李春利, 李浩. 渗透汽化-隔壁塔精馏耦合初步分离费托合成水的过程研究[J]. 化工学报, 2022, 73(5): 2020-2030.
[4] 戚子豪, 钟文琪, 陈曦, 周冠文, 赵小亮, 辛美静, 陈翼, 朱永长. 基于混合建模的水泥生料分解过程动态特性研究[J]. 化工学报, 2022, 73(5): 2039-2051.
[5] 王佳怡, 范垂钢, 李松庚. 碳氧官能团对煤焦低温还原NO的影响[J]. 化工学报, 2022, 73(5): 2140-2148.
[6] 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703.
[7] 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245.
[8] 许晓东, 马晨波, 孙见君, 张玉言, 於秋萍. 基于最优传质系数的槽型结构参数对液膜机械密封汽化特性影响及优化[J]. 化工学报, 2022, 73(3): 1147-1156.
[9] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[10] 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402.
[11] 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758.
[12] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[13] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[14] 李宇明, 刘梓烨, 张启扬, 王雅君, 崔国庆, 姜桂元, 贺德华. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932.
[15] 丁婉月, 马晓华. 合成次数及硅铝比调控SAPO-34分子筛膜的乙醇脱水性能[J]. 化工学报, 2021, 72(8): 4410-4417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!