化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2971-2981.doi: 10.11949/0438-1157.20220192
董彬1(),薛永浩1,梁坤峰1(
),袁争印2,王林1,周训1
Bin DONG1(),Yonghao XUE1,Kunfeng LIANG1(
),Zhengyin YUAN2,Lin WANG1,Xun ZHOU1
摘要:
根据相变微胶囊储存和释放潜热的特殊性质,分别使用相变微胶囊悬浮液(MPCMS)和纯水作为喷淋介质,搭建了一个小型喷淋塔装置,其中相变微胶囊的芯材为正二十二烷(C22H46)。实验设定了五个喷淋温度(35、40、44、47、51℃)、三个空气流量(0.011、0.018、0.025 m3/s)和两种直径(SMD=80、240 μm)的大、小液滴作为实验变量,探究了上述两种介质与空气之间的换热特性。实验结果表明:相变微胶囊的过冷会影响换热过程。常温常湿条件下,对于小液滴,当空气流量为0.018、0.025 m3/s时,喷淋温度为44、47℃的MPCMS比相同温度下的纯水更能促进换热;当空气流量为0.011 m3/s时,喷淋温度为44℃的MPCMS比相同温度下的纯水更能促进换热。对于大液滴,在三种空气流量下,喷淋温度为44℃的MPCMS比相同温度下的纯水作为喷淋介质时换热效果更好。
中图分类号:
1 | Rao Z H, Qian Z, Kuang Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514-1522. |
2 | Erdemir D, Atesoglu H, Altuntop N. Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system[J]. Renewable Energy, 2019, 138: 187-197. |
3 | Serale G, Fabrizio E, Perino M. Design of a low-temperature solar heating system based on a slurry phase change material (PCS)[J]. Energy and Buildings, 2015, 106: 44-58. |
4 | Pandey A K, Hossain M S, Tyagi V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323. |
5 | Al-Abidi A A, Bin Mat S, Sopian K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5802-5819. |
6 | Trivedi G V N, Parameshwaran R. Microencapsulated phase change material suspensions for cool thermal energy storage[J]. Materials Chemistry and Physics, 2020, 242: 122519. |
7 | Inaba H, Zhang Y L, Horibe A, et al. Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed in a horizontal rectangular enclosure heated from below and cooled from above[J]. Heat and Mass Transfer, 2007, 43(5): 459-470. |
8 | Inaba H, Zhang Y L, Horibe A. Transient heat storage characteristics on horizontal rectangular enclosures filled with fluidity slurry of micro-encapsulated phase-change-material dispersed in water[J]. Journal of Thermal Science and Technology, 2006, 1(2): 66-77. |
9 | Yuan Z Y, Liang K F, Xue Y H, et al. Experimental study of evaluation of dynamical utilization of a microencapsulated phase change material slurry based on temperature range matching analysis[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105788. |
10 | Allouche Y, Varga S, Bouden C, et al. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank[J]. Energy Conversion and Management, 2015, 94: 275-285. |
11 | Zhang S, Niu J L. Two performance indices of TES apparatus: comparison of MPCM slurry vs. stratified water storage tank[J]. Energy and Buildings, 2016, 127: 512-520. |
12 | Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Applied Thermal Engineering, 2018, 144: 721-725. |
13 | Diaconu B M, Varga S, Oliveira A C. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry[J]. Energy, 2010, 35(6): 2688-2693. |
14 | Bai Z R, Miao Y B, Xu H T, et al. Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry[J]. Thermal Science and Engineering Progress, 2020, 17: 100362. |
15 | 卜令帅, 屈治国, 徐洪涛, 等. 相变微胶囊悬浮液储能系统放冷特性实验研究[J]. 化工学报, 2021, 72(8): 4064-4072. |
Bu L S, Qu Z G, Xu H T, et al. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry[J]. CIESC Journal, 2021, 72(8): 4064-4072. | |
16 | Kong M, Alvarado J L, Terrell W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2016, 101: 901-914. |
17 | Sabbah R, Farid M M, Al-Hallaj S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study[J]. Applied Thermal Engineering, 2009, 29(2/3): 445-454. |
18 | 钟小龙, 刘东, 胥海伦. 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67(S1): 203-209. |
Zhong X L, Liu D, Xu H L. Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67(S1): 203-209. | |
19 | Liu L K, Alva G, Jia Y T, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51. |
20 | Qiu Z Z, Li L. Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux[J]. Sustainable Cities and Society, 2020, 52: 101786. |
21 | Ma F, Chen J, Zhang P. Experimental study of the hydraulic and thermal performances of nano-sized phase change emulsion in horizontal mini-tubes[J]. Energy, 2018, 149: 944-953. |
22 | Zhang Y L, Wang S F, Rao Z H, et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2726-2733. |
23 | Wang X C, Niu J L, Li Y, et al. Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2480-2491. |
24 | Yamagishi Y, Sugeno T, Ishige T, et al. An evaluation of microencapsulated PCM for use in cold energy transportation medium[C]//IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington, DC, USA: IEEE, 1996: 2077-2083. |
25 | Zhang X X, Fan Y F, Tao X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306. |
26 | Inaba H, Kim M J, Horibe A. Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters[J]. Journal of Heat Transfer, 2004, 126(4): 558-565. |
27 | Zhang Y P, Jiang Y, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201-205. |
28 | Mar n J M, Zalba B N, Cabeza L F, et al. Determination of enthalpy temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties[J]. Measurement Science and Technology, 2003, 14(2): 184-189. |
29 | Xu Z, Xiao Y H, Wang Y. Experimental and theoretical studies on air humidification by a water spray for humid air turbine cycle[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona, Spain, 2008: 385-393. |
30 | 胡先旭, 张寅平. 等壁温条件下潜热型功能热流体换热强化机理的理论研究[J]. 太阳能学报, 2002, 23(5): 626-633. |
Hu X X, Zhang Y P. Theoretical analysis of the convective heat transfer enhancement of latent functionally thermal fluid with isothermal wall[J]. Acta Energiae Solaris Sinica, 2002, 23(5): 626-633. | |
31 | 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912. |
Zhang F, Xu J Q, Huang X J. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the CSEE, 2017, 37(10): 2905-2912. | |
32 | Xia Z Z, Chen C J, Wang R Z. Numerical simulation of a closed wet cooling tower with novel design[J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2367-2374. |
33 | Kloppers J C, Kröger D G. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. International Journal of Thermal Sciences, 2005, 44(9): 879-884. |
[1] | 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231. |
[2] | 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884. |
[3] | 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951. |
[4] | 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621. |
[5] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[6] | 黄其, 章晓敏, 宓霄凌, 周楷, 钟英杰. 三角槽道低 Reynolds 数脉动流与柔性壁耦合特性研究[J]. 化工学报, 2022, 73(5): 1964-1973. |
[7] | 李雪, 东明, 张璜, 谢俊. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946. |
[8] | 张宇伦, 陈长坤, 雷鹏. 不同可燃液体层高度下浸润多孔介质砂床组合燃烧特性实验研究[J]. 化工学报, 2022, 73(4): 1826-1833. |
[9] | 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522. |
[10] | 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742. |
[11] | 李俊, 黎仕华, 孙志高, 宋士博. 超声对无沸腾区浸液式喷雾冷却的影响研究[J]. 化工学报, 2022, 73(4): 1566-1574. |
[12] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
[13] | 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545. |
[14] | 黄志豪, 李光熙, 唐桂华, 李小龙, 范元鸿. 单侧加热方形通道内超临界水传热研究[J]. 化工学报, 2022, 73(4): 1523-1533. |
[15] | 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135. |
|