化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2971-2981.doi: 10.11949/0438-1157.20220192

• 流体力学与传递现象 • 上一篇    下一篇



  1. 1.河南科技大学先进制冷循环与热过程控制研究所,河南 洛阳 471003
    2.冈山大学大学院自然科学研究科,日本 冈山 700-8530
  • 收稿日期:2022-02-10 修回日期:2022-04-29 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 梁坤峰 E-mail:dongbin@haust.edu.cn;lkf@haust.edu.cn
  • 作者简介:董彬(1980—),男,讲师,dongbin@haust.edu.cn
  • 基金资助:

Experimental study on spray heat transfer characteristics of microencapsulated phase change material suspension

Bin DONG1(),Yonghao XUE1,Kunfeng LIANG1(),Zhengyin YUAN2,Lin WANG1,Xun ZHOU1   

  1. 1.Advanced Refrigeration Cycle and Thermal Process Control Institute, Henan University of Science and Technology, Luoyang 471003, Henan, China
    2.Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
  • Received:2022-02-10 Revised:2022-04-29 Published:2022-07-05 Online:2022-08-01
  • Contact: Kunfeng LIANG E-mail:dongbin@haust.edu.cn;lkf@haust.edu.cn


根据相变微胶囊储存和释放潜热的特殊性质,分别使用相变微胶囊悬浮液(MPCMS)和纯水作为喷淋介质,搭建了一个小型喷淋塔装置,其中相变微胶囊的芯材为正二十二烷(C22H46)。实验设定了五个喷淋温度(35、40、44、47、51℃)、三个空气流量(0.011、0.018、0.025 m3/s)和两种直径(SMD=80、240 μm)的大、小液滴作为实验变量,探究了上述两种介质与空气之间的换热特性。实验结果表明:相变微胶囊的过冷会影响换热过程。常温常湿条件下,对于小液滴,当空气流量为0.018、0.025 m3/s时,喷淋温度为44、47℃的MPCMS比相同温度下的纯水更能促进换热;当空气流量为0.011 m3/s时,喷淋温度为44℃的MPCMS比相同温度下的纯水更能促进换热。对于大液滴,在三种空气流量下,喷淋温度为44℃的MPCMS比相同温度下的纯水作为喷淋介质时换热效果更好。

关键词: 相变微胶囊悬浮液, 喷淋, 粒子, 对流, 传热, 过冷


According to the special properties of microencapsulated phase change material to store and release latent heat, microencapsulated phase change material suspension (MPCMS) and pure water were used as spray media respectively to build a small spray tower device, in which the core material of microencapsulated phase change material is n-dodecane (C22H46). Five spray temperatures (35, 40, 44, 47, 51℃), three air flows (0.011, 0.018, 0.025 m3/s) and two diameters (SMD=80, 240 μm) were set as experimental variables. The heat transfer characteristics between the two media that described and air were investigated. The experimental results show that the supercooling of the phase change microcapsules will affect the heat transfer process. Under normal temperature and humidity, for small droplets, when the air flow rate is 0.018 and 0.025 m3/s, MPCMS at 44 and 47℃ can promote heat transfer better than pure water at the same temperature. When air flow rate is 0.011 m3/s, MPCMS at 44℃ can promote heat transfer better than pure water at the same temperature. For large droplets, MPCMS with spraying temperature of 44℃ has better heat transfer effect than pure water with spraying medium at the same temperature under three kinds of air flow.

Key words: microencapsulated phase change material suspension, spray, particle, convection, heat transfer, supercooling


  • TB 61+1


静态换热测试装置1—恒温槽; 2—保温桶; 3—换热盘管; 4—搅拌器; 5—试管; 6—计算机;7—安捷伦数据采集仪"









热成像图片(SMD=80 μm,qv=0.018 m3/s)(a)~(c) 纯水,常温常湿;(d)~(f) 纯水,高温高湿;(g)~(i) MPCMS,常温常湿;(j)~(l) MPCMS,高温高湿"










MPCMS的等效比热容和温度的变化情况(qv1=0.011 m3/s, qv2=0.018 m3/s, qv3=0.025 m3/s)"



1 Rao Z H, Qian Z, Kuang Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514-1522.
2 Erdemir D, Atesoglu H, Altuntop N. Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system[J]. Renewable Energy, 2019, 138: 187-197.
3 Serale G, Fabrizio E, Perino M. Design of a low-temperature solar heating system based on a slurry phase change material (PCS)[J]. Energy and Buildings, 2015, 106: 44-58.
4 Pandey A K, Hossain M S, Tyagi V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323.
5 Al-Abidi A A, Bin Mat S, Sopian K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5802-5819.
6 Trivedi G V N, Parameshwaran R. Microencapsulated phase change material suspensions for cool thermal energy storage[J]. Materials Chemistry and Physics, 2020, 242: 122519.
7 Inaba H, Zhang Y L, Horibe A, et al. Numerical simulation of natural convection of latent heat phase-change-material microcapsulate slurry packed in a horizontal rectangular enclosure heated from below and cooled from above[J]. Heat and Mass Transfer, 2007, 43(5): 459-470.
8 Inaba H, Zhang Y L, Horibe A. Transient heat storage characteristics on horizontal rectangular enclosures filled with fluidity slurry of micro-encapsulated phase-change-material dispersed in water[J]. Journal of Thermal Science and Technology, 2006, 1(2): 66-77.
9 Yuan Z Y, Liang K F, Xue Y H, et al. Experimental study of evaluation of dynamical utilization of a microencapsulated phase change material slurry based on temperature range matching analysis[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105788.
10 Allouche Y, Varga S, Bouden C, et al. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank[J]. Energy Conversion and Management, 2015, 94: 275-285.
11 Zhang S, Niu J L. Two performance indices of TES apparatus: comparison of MPCM slurry vs. stratified water storage tank[J]. Energy and Buildings, 2016, 127: 512-520.
12 Xu H T, Miao Y B, Wang N, et al. Experimental investigations of heat transfer characteristics of MPCM during charging[J]. Applied Thermal Engineering, 2018, 144: 721-725.
13 Diaconu B M, Varga S, Oliveira A C. Experimental study of natural convection heat transfer in a microencapsulated phase change material slurry[J]. Energy, 2010, 35(6): 2688-2693.
14 Bai Z R, Miao Y B, Xu H T, et al. Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry[J]. Thermal Science and Engineering Progress, 2020, 17: 100362.
15 卜令帅, 屈治国, 徐洪涛, 等. 相变微胶囊悬浮液储能系统放冷特性实验研究[J]. 化工学报, 2021, 72(8): 4064-4072.
Bu L S, Qu Z G, Xu H T, et al. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry[J]. CIESC Journal, 2021, 72(8): 4064-4072.
16 Kong M, Alvarado J L, Terrell W, et al. Performance characteristics of microencapsulated phase change material slurry in a helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2016, 101: 901-914.
17 Sabbah R, Farid M M, Al-Hallaj S. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study[J]. Applied Thermal Engineering, 2009, 29(2/3): 445-454.
18 钟小龙, 刘东, 胥海伦. 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67(S1): 203-209.
Zhong X L, Liu D, Xu H L. Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67(S1): 203-209.
19 Liu L K, Alva G, Jia Y T, et al. Dynamic thermal characteristics analysis of microencapsulated phase change suspensions flowing through rectangular mini-channels for thermal energy storage[J]. Energy and Buildings, 2017, 134: 37-51.
20 Qiu Z Z, Li L. Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux[J]. Sustainable Cities and Society, 2020, 52: 101786.
21 Ma F, Chen J, Zhang P. Experimental study of the hydraulic and thermal performances of nano-sized phase change emulsion in horizontal mini-tubes[J]. Energy, 2018, 149: 944-953.
22 Zhang Y L, Wang S F, Rao Z H, et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry[J]. Solar Energy Materials and Solar Cells, 2011, 95(10): 2726-2733.
23 Wang X C, Niu J L, Li Y, et al. Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2480-2491.
24 Yamagishi Y, Sugeno T, Ishige T, et al. An evaluation of microencapsulated PCM for use in cold energy transportation medium[C]//IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington, DC, USA: IEEE, 1996: 2077-2083.
25 Zhang X X, Fan Y F, Tao X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306.
26 Inaba H, Kim M J, Horibe A. Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microcapsules having different diameters[J]. Journal of Heat Transfer, 2004, 126(4): 558-565.
27 Zhang Y P, Jiang Y, Jiang Y. A simple method, the-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials[J]. Measurement Science and Technology, 1999, 10(3): 201-205.
28 Mar n J M, Zalba B N, Cabeza L F, et al. Determination of enthalpy temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties[J]. Measurement Science and Technology, 2003, 14(2): 184-189.
29 Xu Z, Xiao Y H, Wang Y. Experimental and theoretical studies on air humidification by a water spray for humid air turbine cycle[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. Barcelona, Spain, 2008: 385-393.
30 胡先旭, 张寅平. 等壁温条件下潜热型功能热流体换热强化机理的理论研究[J]. 太阳能学报, 2002, 23(5): 626-633.
Hu X X, Zhang Y P. Theoretical analysis of the convective heat transfer enhancement of latent functionally thermal fluid with isothermal wall[J]. Acta Energiae Solaris Sinica, 2002, 23(5): 626-633.
31 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912.
Zhang F, Xu J Q, Huang X J. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the CSEE, 2017, 37(10): 2905-2912.
32 Xia Z Z, Chen C J, Wang R Z. Numerical simulation of a closed wet cooling tower with novel design[J]. International Journal of Heat and Mass Transfer, 2011, 54(11/12): 2367-2374.
33 Kloppers J C, Kröger D G. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. International Journal of Thermal Sciences, 2005, 44(9): 879-884.
[1] 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
[2] 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884.
[3] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[4] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[5] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[6] 黄其, 章晓敏, 宓霄凌, 周楷, 钟英杰. 三角槽道低 Reynolds 数脉动流与柔性壁耦合特性研究[J]. 化工学报, 2022, 73(5): 1964-1973.
[7] 李雪, 东明, 张璜, 谢俊. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946.
[8] 张宇伦, 陈长坤, 雷鹏. 不同可燃液体层高度下浸润多孔介质砂床组合燃烧特性实验研究[J]. 化工学报, 2022, 73(4): 1826-1833.
[9] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[10] 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742.
[11] 李俊, 黎仕华, 孙志高, 宋士博. 超声对无沸腾区浸液式喷雾冷却的影响研究[J]. 化工学报, 2022, 73(4): 1566-1574.
[12] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[13] 许婉婷, 许波, 王鑫, 陈振乾. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.
[14] 黄志豪, 李光熙, 唐桂华, 李小龙, 范元鸿. 单侧加热方形通道内超临界水传热研究[J]. 化工学报, 2022, 73(4): 1523-1533.
[15] 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135.
Full text



No Suggested Reading articles found!