化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2996-3006.doi: 10.11949/0438-1157.20220385

• 催化、动力学与反应器 • 上一篇    下一篇

甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化

张军1,2,3(),胡升1,4(),顾菁1,2,3,袁浩然1,2,3(),陈勇1,2,3   

  1. 1.中国科学院广州能源研究所,广东 广州 510640
    2.中国科学院可再生能源重点实验室,广东 广州 510640
    3.广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
    4.中国科学技术大学工程科学学院,安徽 合肥 230026
  • 收稿日期:2022-03-17 修回日期:2022-06-22 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 袁浩然 E-mail:zhangjun@ms.giec.ac.cn;hs950515@mail.ustc.edu.cn;yuanhr@ms.giec.ac.cn
  • 作者简介:张军(1987—),男,博士,副研究员,zhangjun@ms.giec.ac.cn|胡升(1995—),男,硕士研究生,hs950515@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51976222);能源清洁利用国家重点实验室开放基金课题项目(ZJU-CEU2020023)

Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol

Jun ZHANG1,2,3(),Sheng HU1,4(),Jing GU1,2,3,Haoran YUAN1,2,3(),Yong CHEN1,2,3   

  1. 1.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, Guangdong, China
    2.CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    3.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
    4.School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2022-03-17 Revised:2022-06-22 Published:2022-07-05 Online:2022-08-01
  • Contact: Haoran YUAN E-mail:zhangjun@ms.giec.ac.cn;hs950515@mail.ustc.edu.cn;yuanhr@ms.giec.ac.cn

摘要:

以电镀行业废弃物电镀污泥为前体合成磁性多金属催化材料,考察其在甲醇供氢体系生物基糠醛加氢转化制备糠醇和2-甲基呋喃的催化性能。通过X射线衍射(XRD)、液氮吸脱附、NH3程序升温脱附(NH3-TPD)、扫描电镜(SEM)等手段对煅烧后电镀污泥进行表征,并研究了煅烧温度和各反应工艺条件对甲醇供氢体系糠醛转化的影响。结果表明,电镀污泥衍生磁性多金属材料均具有强酸性位点和部分介孔结构,以铜组分为主的催化活性中心在反应过程中部分被还原为零价,有助于促进甲醇重整产氢和糠醛加氢转化;以700℃煅烧的电镀污泥为催化剂,在240℃反应2 h以上,糠醛几乎完全转化,产物中糠醇和2-甲基呋喃最高收率(摩尔分数)分别为70.9%和31.9%,反应过程副产物以2-呋喃甲基甲醚和2-(二甲氧基甲基)呋喃为主。此外,基于甲醇重整产氢、铜镍组分原位还原以及糠醛加氢反应之间的耦合作用,推测出甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化可能的反应机制。

关键词: 电镀污泥, 甲醇, 生物质, 糠醛, 加氢, 生物燃料

Abstract:

Magnetic multimetallic catalytic materials were synthesized by using electroplating sludge from electroplating industry as precursors, which were applied for the transfer hydrogenation of bio-based furfural using methanol as hydrogen donor. The calcined electroplating sludge was characterized by X-ray diffraction (XRD), liquid nitrogen adsorption and desorption, NH3 temperature-programmed desorption (NH3-TPD) and scanning electron microscopy (SEM). The effects of calcination temperature and reaction conditions on furfural conversion using methanol as hydrogen source were conducted. The results showed that the magnetic polymetallic materials had strong acid sites and partial mesoporous structure. Moreover, the copper component could be partially activated into Cu0 during the reaction, which benefited the hydrogen production from methanol reforming and followed furfural hydrogenation. Using electroplating sludge calcined at 700℃ as catalyst, furfural was almost completely transformed at 240℃ when prolonging reaction time over 2 h, in which the yields of furfuryl alcohol and 2-methylfuran reached up to 70.9% and 31.9% respectively. Noticeably, 2-furylmethyl methyl ether and 2-(dimethoxymethyl) furan were detected as the main by-products during the reaction. In addition, on the basis of the coupling effect among methanol reforming into H2, in-situ reduction of copper/nickel components and furfural hydrogenation, the plausible reaction mechanism for furfural hydrogenation over magnetic polymetallic materials derived from electroplating sludge using methanol as hydrogen source and solvent was proposed.

Key words: electroplating sludge, methanol, biomass, furfural, hydrogenation, biofuel

中图分类号: 

  • TQ 251

表1

电镀污泥主要元素成分"

组成质量分数/%
Fe44.57
Cu30.28
O14.28
Ni2.51
Sn2.35
S2.04
Si1.04
Ca0.96
其他1.97

图1

煅烧后电镀污泥XRD谱图"

图2

CES-T样品N2吸附-脱附等温线"

表2

CES-T催化剂结构特性"

样品比表面积/(m2/g)平均孔径/nm总孔容/(cm3/g)
CES-40082.5329.410.34
CES-55048.1330.200.21
CES-70041.1054.050.17
CES-85010.143.410.02
CES-700R25.473.860.10

图3

CES-T和CES-700R样品SEM图"

图4

CES-T催化剂NH3-TPD谱图"

表3

CES-T样品酸性位点分布"

样品弱酸性/(μmol/g)中等酸性/(μmol/g)强酸性/(μmol/g)总酸量/(μmol/g)
CES-4001.82.48.112.3
CES-5501.32.26.810.3
CES-70024.624.6
CES-8501.918.520.4

图5

催化剂回收前后的XPS谱图"

图6

CES-700催化甲醇重整气相色谱图(反应条件:甲醇12 ml,CES-700 30 mg,220℃, 2 h)"

表4

CES-700催化甲醇重整气相产物分布"

保留时间/min组分含量/%(体积分数)
1.001H211.41
1.807CH40.20
2.092C2H60.0003
2.323C2H40.0005
2.469CO20.74
6.702CO2.57

表5

CES-T对FFR转移加氢反应的催化活性"

样品FFR转化率/%FA收率/%MF收率/%
CES-40058.43.70.8
CES-55060.94.12.9
CES-70096.840.45.9
CES-85075.035.50.5

图7

反应温度对FFR加氢转化的影响(反应条件:FFR 0.6 mmol,甲醇12 ml,CES-700 30 mg,2 h)"

图8

FFR加氢转化产物离子色谱图"

图9

催化剂用量对FFR转移加氢的影响(反应条件:FFR 0.6 mmol,甲醇12 ml,240℃,2 h)"

图10

反应时间对FFR转移加氢的影响(反应条件:FFR 0.6 mmol,甲醇12 ml,CES-700 20 mg,240℃)"

图11

催化剂循环使用性能(反应条件:FFR 0.6 mmol,甲醇12 ml,CES-700 30 mg,240℃,2 h)"

图12

使用后CES-700催化剂的热重特性图"

图13

甲醇供氢体系CES-T催化FFR加氢转化反应路径"

1 Fan L L, Ruan R, Li J, et al. Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite[J]. Applied Energy, 2020, 263: 114629.
2 郭海军, 张海荣, 丁帅, 等. 木质纤维素多元醇液化及液化产物提质的研究进展[J]. 化工学报, 2021, 72(6): 3228-3238.
Guo H J, Zhang H R, Ding S, et al. Research progress on lignocellulose liquefaction in polyhydric alcohol and upgrading of liquefaction product[J]. CIESC Journal, 2021, 72(6): 3228-3238.
3 He Y F, Bie Y W, Lehtonen J, et al. Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: process optimization and reaction kinetics[J]. Fuel, 2019, 239: 1015-1027.
4 Yu Z Z, Wu H G, Li Y, et al. Advances in heterogeneously catalytic degradation of biomass saccharides with ordered-nanoporous materials[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 16970-16986.
5 Zhou K, Chen J X, Cheng Y J, et al. Enhanced catalytic transfer hydrogenation of biomass-based furfural into 2-methylfuran over multifunctional Cu-Re bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16624-16636.
6 Chen L F, Ye J Y, Yang Y S, et al. Catalytic conversion furfuryl alcohol to tetrahydrofurfuryl alcohol and 2-methylfuran at terrace, step, and corner sites on Ni[J]. ACS Catalysis, 2020, 10(13): 7240-7249.
7 Khemthong P, Yimsukanan C, Narkkun T, et al. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass[J]. Biomass and Bioenergy, 2021, 148: 106033.
8 Weerachawanasak P, Krawmanee P, Inkamhaeng W, et al. Development of bimetallic Ni-Cu/SiO2 catalysts for liquid phase selective hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications, 2021, 149:106221.
9 Jiménez-Gómez C P, Cecilia J A, Moreno-Tost R, et al. Selective production of 2-methylfuran by gas-phase hydrogenation of furfural on copper incorporated by complexation in mesoporous silica catalysts[J]. ChemSusChem, 2017, 10(7): 1448-1459.
10 Durndell L J, Zou G C, Shangguan W F, et al. Structure-reactivity relations in ruthenium catalysed furfural hydrogenation[J]. ChemCatChem, 2019, 11(16): 3927-3932.
11 Pirmoradi M, Kastner J R. A kinetic model of multi-step furfural hydrogenation over a Pd-TiO2 supported activated carbon catalyst[J]. Chemical Engineering Journal, 2021, 414: 128693.
12 Tolek W, Khruechao K, Pongthawornsakun B, et al. Flame spray-synthesized Pt-Co/TiO2 catalysts for the selective hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications, 2021, 149: 106246.
13 Gao X, Tian S Y, Jin Y Y, et al. Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722-12730.
14 Zhang H G, Tong X L, Gao Y Q, et al. Highly efficient catalytic valorization of biomass-derived furfural in methanol and ethanol[J]. Journal of Industrial and Engineering Chemistry, 2019, 70: 152-159.
15 Wang T, Du J, Sun Y, et al. Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst[J]. Chinese Chemical Letters, 2021, 32(3): 1186-1190.
16 Wang Y T, Zhao D Y, Liang R, et al. Transfer hydrogenation of furfural to furfuryl alcohol over modified Zr-based catalysts using primary alcohols as H-donors[J]. Molecular Catalysis, 2021, 499: 111199.
17 Wang Y C, Hong Z Y, Mei D Q. A thermally autonomous methanol steam reforming microreactor with porous copper foam as catalyst support for hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6734-6744.
18 Zhang S Q, Yang X, Zheng K, et al. In-situ hydrogenation of furfural conversion to furfuryl alcohol via aqueous-phase reforming of methanol[J]. Applied Catalysis A: General, 2019, 581: 103-110.
19 Zhang J, Chen J Z. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5982-5993.
20 Shen S Y, Liu Y, Zhai D, et al. Electroplating sludge-derived spinel catalysts for NO removal via NH3 selective catalysis reduction[J]. Applied Surface Science, 2020, 528: 146969.
21 Bai H, Wang Z F, Zhang J, et al. Synthesis of a perovskite-type catalyst from Cr electroplating sludge for effective catalytic oxidization of VOC[J]. Journal of Environmental Management, 2021, 294: 113025.
22 Zhang C, Song J, Zhang J, et al. Understanding and application of an electroplating sludge-derived catalyst with an active texture for improved NO reduction[J]. Science of the Total Environment, 2018, 631/632: 308-316.
23 Chen D, Hou J, Yao L H, et al. Ferrite materials prepared from two industrial wastes: electroplating sludge and spent pickle liquor[J]. Separation and Purification Technology, 2010, 75(2): 210-217.
24 Li C Y, Zhang J, Gu J, et al. Insight into the role of varied acid-base sites on fast pyrolysis kinetics and mechanism of cellulose[J]. Waste Management, 2021, 135: 140-149.
25 Qi S C, Liu X Y, Zhu R R, et al. Causation of catalytic activity of Cu-ZnO for CO2 hydrogenation to methanol[J]. Chemical Engineering Journal, 2022, 430: 132784.
26 Xia H H, Li J, Chen C Z, et al. Selective aqueous-phase hydrogenation of furfural to cyclopentanol over Ni-based catalysts prepared from Ni-MOF composite[J]. Inorganic Chemistry Communications, 2021, 133: 108894.
27 Singh G, Khan T S, Samanta C, et al. Single-step synthesis of 2-pentanone from furfural over Cu-Ni @SBA-15[J]. Biomass and Bioenergy, 2022, 156: 106321.
28 Chubar N, Gerda V, Szlachta M, et al. Effect of Fe oxidation state (+2 versus +3) in precursor on the structure of Fe oxides/carbonates-based composites examined by XPS, FTIR and EXAFS[J]. Solid State Sciences, 2021, 121: 106752.
29 Chen Y P, Ma L X, Zhang R G, et al. Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2022, 312: 121393.
30 Winoto H P, Ahn B S, Jae J. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: optimizing the catalyst acid properties and process conditions[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 62-71.
31 Li F, Lu C S, Li X N. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters, 2014, 25(11): 1461-1465.
32 Ma F, Li H L, Jiang J X. Furfural reduction via hydrogen transfer from supercritical methanol[J]. Chemical Research in Chinese Universities, 2019, 35(3): 498-503.
33 Pasini T, Lolli A, Albonetti S, et al. Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: scope, limitations, and reaction mechanism[J]. Journal of Catalysis, 2014, 317: 206-219.
34 Gilkey M J, Panagiotopoulou P, Mironenko A V, et al. Mechanistic insights into metal lewis acid-mediated catalytic transfer hydrogenation of furfural to 2-methylfuran[J]. ACS Catalysis, 2015, 5(7): 3988-3994.
35 Chen H, Ruan H H, Lu X L, et al. Catalytic conversion of furfural to methyl levulinate in a single-step route over Zr/SBA-15 in near-critical methanol[J]. Chemical Engineering Journal, 2018, 333: 434-442.
[1] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[2] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[3] 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157.
[4] 张家仁, 刘海超. 大豆油与甲醇酯交换反应体系的相平衡研究[J]. 化工学报, 2022, 73(5): 1920-1929.
[5] 李梦雨, 王冬祥, 郑晓阳, 徐桂转, 杜朝军, 常春. 粗甘油生物基聚氨酯材料的制备及吸附性能研究[J]. 化工学报, 2022, 73(5): 2270-2278.
[6] 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221.
[7] 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825.
[8] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[9] 欧阳志鹏, 刘庭峰, 冷尔唯, 冯天毅, 曾建辉, 龚勋. 纤维素低氧环境下热解特性和糖类生成机制[J]. 化工学报, 2022, 73(3): 1351-1358.
[10] 袁聪, 蒲舸, 高杰, 贾帅辉. 改性BaFe2O4载氧体生物质化学链气化特性[J]. 化工学报, 2022, 73(3): 1359-1368.
[11] 叶茂林, 谭烽华, 李宇萍, 廖玉河, 王晨光, 马隆龙. 农林废弃物气化合成混合醇生命周期环境影响分析[J]. 化工学报, 2022, 73(3): 1369-1378.
[12] 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007.
[13] 徐飞翔, 蒋丽群, 郑安庆, 赵增立. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172.
[14] 许雄飞, 刘鹏龙, 张玮, 许鑫, 张侃, 王俊文. 两段法固定床甲醇制芳烃产物预测多元非线性回归模型[J]. 化工学报, 2022, 73(2): 838-846.
[15] 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!